Answer
is: activation energy of this reaction is 212,01975 kJ/mol.<span>
Arrhenius equation: ln(k</span>₁/k₂) =
Ea/R (1/T₂ - 1/T₁).<span>
k</span>₁
= 0,000643 1/s.<span>
k</span>₂
= 0,00828 1/s.
T₁ = 622 K.
T₂ = 666 K.
R = 8,3145 J/Kmol.
<span>
1/T</span>₁ =
1/622 K = 0,0016 1/K.<span>
1/T</span>₂ =
1/666 K = 0,0015 1/K.<span>
ln(0,000643/0,00828) = Ea/8,3145 J/Kmol ·
(-0,0001 1/K).
-2,55 = Ea/8,3145 J/Kmol </span>· (-0,0001 1/K).<span>
Ea = 212019,75 J/mol = 212,01975 kJ/mol.</span>
Number of O atoms : 24
<h3>Further explanation</h3>
Given
C₆H₁₂O₆ compound
Required
Number of atoms
Solution
A molecular formula shows the number of atomic elements in compound.
The empirical formula is the smallest comparison of the atoms
Glucose-C₆H₁₂O₆ is composed of 3 elements, namely C, H, and O.
The number of atoms in a compound can usually be seen from the subscript number after the atom and the reaction coefficient shows the number of molecules
So number of O atoms :
= 4 x 6 = 24 atoms
Electronic Configuration of elements in a period is same because If you see the electronic Configuration of elements in a period you will notice that the valence shell electrons for all elements are present in the same Shell. For example, in first period consisting of Hydrogen and Helium, both the elements' valence electrons are present in the same Shell.
Electronic Configuration of Hydrogen,
1s^1
Electronic Configuration of Helium,
1s^2
Both elements' valance electrons are present in the 1st shell
(This is just a small example to understand the concept because other periods are long but the first period is short that's why I gave the example of the first period)
Answer:
Bombardment by asteroids
Explanation:
All of the other ones explain themselves