<u>Answer:</u>
<em>When we finish, the temperature would be 32.5℃</em>
<em></em>
<u>Explanation:</u>
Density of water = mass/volume
So,
Mass of water = Density × Volume


where
= Final T - Initial T
Q is the heat energy in calories
c is the specific heat capacity (for water 1.0 cal/(g℃))
m is the mass of water
plugging in the values


Final T = ∆T + Initial T
= 7.5℃ + 25℃ = 32.5℃ (Answer).
The independent variable in the experiment is the soap and the dependent variable in the experiment is the number of water drops on the surface of the penny. The control is the penny without soap.
Answer:
The equation is: CuCO3(s) → CuO(s) + CO2(g)
Explanation:
Copper carbonate decomposes at high temperatures, generating the products carbon dioxide (CO2) and copper oxide (II) CuO. In this type of decomposition reaction, a substance is broken generating two different compounds.
Answer:
Rutherford's atomic model explained how the electrons surrounded the nucleus of protons and neutrons. His model showed how J. J. Thomson's Plum Pudding model was incorrect.
Answer:
There was an improvement in accuracy. There was no change in precision.
Explanation:
<em>The average mass after recalibration is closer to the mass of the standard, </em>so the recalibration improved the accuracy<em> </em>(the measurement is closer to an accepted 'true' value).
The standard deviation did not change, so the precision (or how disperse the measurements are) was not affected.