First we find for the wavelength of the photon released due
to change in energy level. We use the Rydberg equation:
1/ʎ = R [1/n1^2 – 1/n2^2]
where,
ʎ is the wavelength
R is the rydbergs constant = 1.097×10^7 m^-1
n1 is the 1st energy level = 1
n2 is the higher energy level = infinity, so 1/n2 = 0
Calculating for ʎ:
1/ʎ = 1.097×10^7 m^-1 * [1/1^2 – 0]
ʎ = 9.1158 x 10^-8 m
Then calculate the energy using Plancks equation:
E = hc/ʎ
where,
h is plancks constant = 6.626×10^−34 J s
c is speed of light = 3x10^8 m/s
E = (6.626×10^−34 J s * 3x10^8 m/s) / 9.1158 x 10^-8 m
E = 2.18 x 10^-18 J = 2.18 x 10^-21 kJ
This is still per atom, so multiply by Avogadros number =
6.022 x 10^23 atoms / mol:
E = (2.18 x 10^-21 kJ / atom) * (6.022 x 10^23 atoms /
mol)
E = 1312 kJ/mol
Because potassium is more reactive than hydrogen
Answer:
<h3>Hlo there !! </h3>
<u>One mole of any substance contains 6.022*1023 structural units (atoms, molecules, ions, etc.). This number is known as the Avogadro constant.</u>
<u>One mole of any substance contains 6.022*1023 structural units (atoms, molecules, ions, etc.). This number is known as the Avogadro constant.So 1.04*107 mol of Al contains 1.40*107 * 6.022*1023 = 8.43*1030 structural units (in case of Al – atoms).</u>
<h3><u>8.43*1030 particles Al.</u></h3>
Explanation:
<h3>Hope this helps !!</h3>
Let's write the equation

According to law of conservation of mass .
- Mass of products=Mass of reactants
Let required value be x




i may be wrong but Use the normal boiling points: propane, C3H8, –42.1˚C; butane, C4H10, –0.5˚C; pentane, C5H12, 36.1˚C; hexane, C6H14, 68.7˚C; heptane, C7H16, 98.4˚C; to estimate the normal boiling point of octane, C8H18.