Given that 1 mole contains 6.02x10^23 molecules, 3.0x10^23 is just around half a mole. Then we check the number of moles for each choice:
A. This is approximately half a mole, since the molar mass of Br2 is 159.8 g/mol.
B. He has a molar mass around 4 g/mol, so this is 1 mole.
C. H2 has a molar mass of 2.02 g/mol, so this is 2 moles.
D. Li has a molar mass of around 6.97 g/mol, so this is around 2 moles.
Therefore the only choice that fits is A. 80 g of Br2.
Answer:
(1) addition of HBr to 2-methyl-2-pentene
Explanation:
In this case, we will have the formation of a <u>carbocation</u> for each molecule. For molecule 1 we will have a <u>tertiary carbocation</u> and for molecule 2 we will have a <u>secondary carbocation</u>.
Therefore the <u>most stable carbocation</u> is the one produced by the 2-methyl-2-pentene. So, this molecule would react faster than 4-methyl-1-pentene. (See figure)
Answer:
There are two types of cell division: mitosis and meiosis. Most of the time when people refer to “cell division,” they mean mitosis, the process of making new body cells.
The atomic mass of the isotope Ni ( 62 over 28 ) = 61.928345 amu.
Mass of the electrons: 28 · 5.4584 · 10^(-4 ) amu = 0.0152838 amu ( g/mol )
Mass of the nuclei:
61.928345 amu - 0.0152838 amu = 61.913062 amu (g/mol)
The mass difference between a nucleus and its constituent nucleons is called the mass defect.
For Ni ( 62 over 28 ): Mass of the protons: 28 · 1.00728 amu = 28.20384 amu
Mass of the neutrons: 34 · 1.00866 amu = 34.299444 amu
In total : 62.49828 amu
The mass defect = 62.49828 - 61.913062 = 0.585218 amu
Nucleus binding energy:
E = Δm · c² ( the Einstein relationship )
E = 0.585218 · ( 2.9979 · 10^8 m/s )² · 1 / (6.022 · 10^23) · 1 kg / 1000 g =
= 0.585218 · 8.9874044 · 10 ^16 : (6.022 · 10^23) · 0.001 =
= ( 5.2595908 : 6.022 ) · 0.001 · 10^(-7 ) =
= 0.0008733 · 10^(-7) J = 8.733 · 10^(-11) J
The nucleus binding energy per nucleon:
8.733 · 10^(-11) J : 62 = 0.14085 · 10 ^(-11) =
= 1.4085 · 10^(-12) J per nucleon.
The answer is 4 hope that help.