Hello!


Just do your time tables, and you will get the answer from there ! Cause- you already know what is the answer is.
Hopefully This Helps !

^-^
<span>We use ratio and proportion to solve each of these:
</span><span>
</span><span>1.
The scale of a map is 1 in = 19.5 mi map: ________ in actual: 9.5 mi
</span><span>1 in / 19.5 mi = x in / 9.5 mi, x = 0.487 in
</span><span>
</span><span>2.
The scale of a map is 7 in = 16 mi map: 4.9 in actual: ______ mi
</span><span>7 in / 16 mi = 4.9 in / x mi, x = 11.2 mi
</span><span>
</span><span>3. The
scale factor for a model is 5 cm = ________ m Model : 72.5 cm actual:
165.3 m
</span><span>5 cm / x m = 72.5 cm / 165.3 m, x = 11.4 m
</span><span>
</span><span>4. The scale of a map is 1 in = 9.6 mi map: ________ in actual:
34.7 mi
</span><span>1 in / 9.6 mi = x in / 34.7 mi, x = 3.62 in
</span><span>
</span><span>5. The scale of a map is 1 ft = 9.6 mi map: ________ ft actual:
38.4 mi
</span><span>1 ft / 9.6 mi = x ft / 38.4 mi, x = 4 ft
</span><span>
</span><span>6. The scale factor for a model is 5 cm = ________ m Model :
22.4 cm actual: 155.2 m
</span><span>5 cm / x m = 22.4 cm / 155.2 m, x = 34.64 m
</span><span>
</span><span>7. The scale of a map is 5 in = 10 mi map: 8.7
in actual: ______ mi
</span><span>5 in / 10 mi = 8.7 in / x mi, x = 17.4 mi
</span><span>
</span><span>8. The scale of a map is 1 in = 13.5 mi map:
________ in actual: 65.9 mi
</span><span>1 in / 13.5 mi = x in / 65.9 mi, x = 4.88 in
</span><span>
</span><span>9. The scale factor for a model is 5 cm =
________ m Model : 61.5 cm actual: 143.2 m
</span><span>5 cm / x m = 61.5 / 143.2 m, x = 11.64 m
</span><span>
</span><span>10. The scale factor for a
model is 5 cm = ________ m Model : 29.7 cm actual: 179.5 m
</span><span>5 cm / x m = 29.7 cm / 179.5 m, x = 30.22 m
</span>
Answer:
The line passing through (-8, 10) and (-1, 4).
Step-by-step explanation:
Two lines are perpendicular if the product of their slopes is -1. The slope of the line in the picture is
, so we should find a line with slope of
.
Note that the slope of the line in the last option is
.
Answer:
Step-by-step explanation:
eq. of directrix is y-1=0
let (x,y) be any point the parabola.
then\sqrt{ (x-6)^2+(y-2)^2}=\frac{y-1}{(-1)*2}
squaring
x²-12x+36+y²-4y+4=y²-2y+1
x²-12 x+40-1=4y-2y
2y=x²-12x+39=x²-12x+36+3
(x-6)²=2y-3
Answer: hehe, I don’t understand spAnIsh
Step-by-step explanation: