Answer:
Dark matter makes up 85% of the mass of the universe. Dark matter is not directly observable because it doesn't interact with any electromagnetic wave. In the development of the universe, without dark matter, the universe will not function, move or rotate as it does now (this speculation led to the quest to find the anomaly of mass and energy in the known universe, eventually leading to the idealization of dark matter) and will not have enough gravitational force to hold it together. After the big bang,<em> the presence of dark matter and energy ensured that the newly formed universe didn't just float away, rather, it provided enough gravitational force to hold the universe while still allowing it to expand sufficiently</em>.
The development of the universe would have been different without the universe in the sense that the young universe won't have enough mass to hold it together, and the universe would have simply floated apart. The behavior of the universe would have been different from what we observe now, and some physical laws that applies now will not apply to the universe.
Answer: Air, sea water, and carbonation dissolved in soda are all examples of homogeneous mixtures, or solutions. Hope this helps :)
D for sure hope this helps
Answer:
The answer is "
"
Explanation:
When
is added in the chemical equation it reacts with sodium acetate so, it will give the following chemical equation:
In this, the
is a weak acid so, it not completely dissociated.
were strong electrolytes they are completely dissociated.
The
is a strong acid so, it is completely dissociated So, the net ionic equation is:

Answer:
0.24 g
Explanation:
Given that:
The average number of the calories for the carbohydrates = 4.1 calorie / g
Also,
6 - oz serving of the diet soda contains less than 1 calorie per can
So,
Maximum mass of carbohydrate = Maximum calorie / Average number of the calories for the carbohydrates
The maximum of the calorie can be 1 calorie per can
So,
<u>Maximum mass of carbohydrate = 1 calorie / 4.1 calorie / g = 0.24 g</u>