Answer:
m = 3 moles/kg
Explanation:
This is a problem of freezing point depression, and the formula or expression to use is the following:
ΔT = i*Kf¨*m (1)
Where:
ΔT: Change of temperature of the solution
i: Van't Hoff factor
m: molality of solution
Kf: molal freezing point depression of water (Kf = 1.86 °C kg/mol)
Now, the value of i is the number of moles of particles obtained when 1 mol of a solute dissolves. In this case, we do not know what kind of solution is, so, we can assume this is a non electrolyte solute, and the value of i = 1.
Let's calculate the value m, which is the molality solving for (1):
m = ΔT/Kf (2)
Finally, let's calculate ΔT:
ΔT = T2 - T1
ΔT = 0 - (-5.58)
ΔT = 5.58 °C
Now, let's replace in (2):
m = 5.58/1.86
<em>m = 3 moles/kg</em>
<em>This is the molality of solution.</em>
<em>The other data of mass, can be used to calculate the molecular mass of this unknown solid, but it's not asked in the question.</em>
Produces heat, putting off air or bubbles and changes the smell or odor it changes the state that’s how you know it is a chemical reaction
Explanation :
(a) 
This reaction is combustion reaction in which an oxygen react with a molecule to give its corresponding oxides ans water molecule.
(b) 
This reaction is a redox reaction or oxidation-reduction reaction in which sulfur get oxidized and oxygen get reduced.
(c) 
This reaction is a combination reaction in which the two reactants molecule combine to form a large molecule or product.
(d) 
This reaction is a decomposition reaction in which a large molecule or reactant decomposes to give two or more molecule or products.
(e) 
This reaction is a double displacement reaction in which the cation of two reactants molecule exchange their places to give two different products.
(f) 
This reaction is a combination reaction in which the two reactants combine to form a large molecule or product.
(g) 
This reaction is a double displacement reaction in which the cation of two reactants molecule exchange their places to give two different products.
(h) 
This reaction is combustion reaction in which a hydrocarbon react with an oxygen to give carbon dioxide and water as a products.
<span>The function of a hypothesis is to create a testable statement. In that, a hypothesis can be followed up by a experiment. Hypotheses can be used in order to determine if there is a result of an affect, this is the independent variable, what you get out is the dependent variable, or the result. There is a control that is used generally as a means to test your hypothesis to a standard.</span>
Answer:
0.0931 is the ans i think