Answer:


Explanation:
Specific Volume 
Absolute Pressure (a) 
Giving



(b) 
Giving



(a)
Generally the equation for quality of Steam X is mathematically given by



(b)
Generally the equation for quality of Steam X is mathematically given by



The EPA requires treated tap water<span> to have a detectable </span>level of chlorine<span> to help prevent contamination. The allowable </span>chlorine <span>in </span>drinking water<span> (up to 4 parts per million) pose “no known or expected health risk [including] an adequate margin of safety.”</span>
Answer:
I believe that the answer is d.
Explanation:
Because there is nothing to make the aircraft accelerate or decelerate, it is going to stay in constant motion with no acceleration.
The force applied by the competitor is littler than the heaviness of the barbell. At the point when the barbell quickens upward, the power applied by the competitor is more prominent than the heaviness of the barbell. When it decelerates upward, the power applied by the competitor is littler than the heaviness of the barbell.
For vertical motion, use the following kinematics equation:
H(t) = X + Vt + 0.5At²
H(t) is the height of the ball at any point in time t for t ≥ 0s
X is the initial height
V is the initial vertical velocity
A is the constant vertical acceleration
Given values:
X = 1.4m
V = 0m/s (starting from free fall)
A = -9.81m/s² (downward acceleration due to gravity near the earth's surface)
Plug in these values to get H(t):
H(t) = 1.4 + 0t - 4.905t²
H(t) = 1.4 - 4.905t²
We want to calculate when the ball hits the ground, i.e. find a time t when H(t) = 0m, so let us substitute H(t) = 0 into the equation and solve for t:
1.4 - 4.905t² = 0
4.905t² = 1.4
t² = 0.2854
t = ±0.5342s
Reject t = -0.5342s because this doesn't make sense within the context of the problem (we only let t ≥ 0s for the ball's motion H(t))
t = 0.53s