Answer:
x(t) = d*cos ( wt )
w = √(k/m)
Explanation:
Given:-
- The mass of block = m
- The spring constant = k
- The initial displacement = xi = d
Find:-
- The expression for displacement (x) as function of time (t).
Solution:-
- Consider the block as system which is initially displaced with amount (x = d) to left and then released from rest over a frictionless surface and undergoes SHM. There is only one force acting on the block i.e restoring force of the spring F = -kx in opposite direction to the motion.
- We apply the Newton's equation of motion in horizontal direction.
F = ma
-kx = ma
-kx = mx''
mx'' + kx = 0
- Solve the Auxiliary equation for the ODE above:
ms^2 + k = 0
s^2 + (k/m) = 0
s = +/- √(k/m) i = +/- w i
- The complementary solution for complex roots is:
x(t) = [ A*cos ( wt ) + B*sin ( wt ) ]
- The given initial conditions are:
x(0) = d
d = [ A*cos ( 0 ) + B*sin ( 0 ) ]
d = A
x'(0) = 0
x'(t) = -Aw*sin (wt) + Bw*cos(wt)
0 = -Aw*sin (0) + Bw*cos(0)
B = 0
- The required displacement-time relationship for SHM:
x(t) = d*cos ( wt )
w = √(k/m)
The current in a parallel circuits is not constant throughout the circuit. It varies in each path of a parallel circuit. The components that is place across each other have the same voltage in a parallel circuit. Remember, V=RI.
Answer:
Explanation:
Given that
speed u=4*10^6 m/s
electric field E=4*10^3 N/c
distance b/w the plates d=2 cm
basing on the concept of the electrostatices
now we find the acceleration b/w the plates
acceleration a=qE/m=1.6*10^-19*4*10^3/9.1*10^-31=0.7*10^15 =7*10^14 m/s
now we find the horizantal distance travelled by electrons hit the plates
horizantal distance X=u[2y/a]^1/2
=4*10^6[2*2*10^-2/7*10^14]^1/2
=3*10^-2=3 cm
now we find the velocity f the electron strike the plate
v^2-(4*10^6)^2=2*7*10^14*2*10^-2
v^2=16*10^12+28*10^12
v^2=44*10^12
speed after hits =>V=6.6*10^6 m/s
Answer:
Electron emitted by nucleus.
I'm 100% sure, that in the Great Plains of the U.S., tornadoes are common in the summer. This is because <span>winds pick up speed more gradually in the summer.</span>