We have that the letter A in the diagram below given as
Amplitude
Option A
<h3>
Amplitude</h3>
Question Parameters:
Amplitude
Crest
Trough
Wavelength
Generally, the amplitude of a wave is the maximum displacement of the wave in the medium from its initial position.
Amplitude is denoted with the letter A
Therefore,Amplitude
Option A
For more information on displacement visit
brainly.com/question/989117
Is the component perpendicular to the surface on contact of the contact force <span />
Light travels at the speed of 186,000 miles per second. If you were to travel around the earth it would be 7.5 times in a second
Answer:
The swimmer has a distance traveled of 800 meters.
The final displacement of the swimmer is 0 meters.
Explanation:
A lap is a round trip made by a swimmer in the pool, so that the distance traveled by swimmer is sixteen times the length of the swimming pool. That is:


A swimmer has a distance traveled of 800 meters.
The displacement is the distance between swimmer and a reference point, let suppose that reference point is located at the beginning of the first lap. Hence, the final displacement of the swimmer is 0 meters.
Answer:
the magnitude of the average contact force exerted on the leg is 3466.98 N
Explanation:
Given the data in the question;
Initial velocity of hand v₀ = 5.25 m/s
final velocity of hand v = 0 m/s
time interval t = 2.65 ms = 0.00265 s
mass of hand m = 1.75 kg
We calculate force on the hand F
using equation for impulse in momentum
F
× t = m( v - v₀ )
we substitute
F
× 0.00265 = 1.75( 0 - 5.25 )
F
× 0.00265 = 1.75( - 5.25 )
F
× 0.00265 = -9.1875
F
= -9.1875 / 0.00265
F
= -3466.98 N
Next we determine force on the leg F
Using Newton's third law of motion
for every action, there is an equal opposite reaction;
so, F
= - F
we substitute
F
= - ( -3466.98 N )
F
= 3466.98 N
Therefore, the magnitude of the average contact force exerted on the leg is 3466.98 N