The final velocity of the train after 8.3 s on the incline will be 12.022 m/s.
Answer:
Explanation:
So in this problem, the initial speed of the train is at 25.8 m/s before it comes to incline with constant slope. So the acceleration or the rate of change in velocity while moving on the incline is given as 1.66 m/s². So the final velocity need to be found after a time period of 8.3 s. According to the first equation of motion, v = u +at.
So we know the values for parameters u,a and t. Since, the train slows down on the slope, so the acceleration value will have negative sign with the magnitude of acceleration. Then
v = 25.8 + (-1.66×8.3)
v =12.022 m/s.
So the final velocity of the train after 8.3 s on the incline will be 12.022 m/s.
Oxygen has<span> a higher electro negativity that then Sulfur, so Sulfur </span>will<span> " lose" electrons to Oxygen and that </span>is<span> the electrons </span>will be<span> pulled closer to the Oxygen causing, for oxygen to </span>have a negative<span> charge and the Sulfur to </span>have<span> a positive charge</span>
Answer:

Explanation:
The three resistors are connected in parallel: this means that the potential difference across each resistor is the same as the voltage of the battery. This can be calculated using the information about the
resistor: in fact, since we know its resistance and the current flowing through it (0.155 A), we can find the potential difference across this resistor, which is equal to the voltage of the battery:

We also know the total current in the circuit, 0.250 A. This means that we can find the total resistance of the circuit, using Ohm's law:

So now we now the total resistance and the resistance of two of the 3 resistors; therefore, we can find the resistance of the 3rd resistor:

Answer:
A. The bomb will take <em>17.5 seconds </em>to hit the ground
B. The bomb will land <em>12040 meters </em>on the ground ahead from where they released it
Explanation:
Maverick and Goose are flying at an initial height of
, and their speed is v=688 m/s
When they release the bomb, it will initially have the same height and speed as the plane. Then it will describe a free fall horizontal movement
The equation for the height y with respect to ground in a horizontal movement (no friction) is
[1]
With g equal to the acceleration of gravity of our planet and t the time measured with respect to the moment the bomb was released
The height will be zero when the bomb lands on ground, so if we set y=0 we can find the flight time
The range (horizontal displacement) of the bomb x is
[2]
Since the bomb won't have any friction, its horizontal component of the speed won't change. We need to find t from the equation [1] and replace it in equation [2]:
Setting y=0 and isolating t we get

Since we have 


Replacing in [2]


A. The bomb will take 17.5 seconds to hit the ground
B. The bomb will land 12040 meters on the ground ahead from where they released it