Firstly the limiting reactant should be identified. Limiting reactant is the reactant that is in limited supply, the amount of product formed depends on the moles present of the limiting reactant.
the stoichiometry of x to y = 1:2
1 mole of x reacts with 2 moles of y
if x is the limiting reactant, there are 3 moles of x, then 6 moles of y should react, however there are only 4 moles of y. Therefore y is the limiting reactant and x is in excess.
4 moles of y reacts with 2 moles of x
since there are 3 moles of x initially and only 2 moles are used up, excess amount of x is 1 mol thats in excess.
Answer:
D. all of the above.
Explanation:
The kinetic-molecular theory of gases suggests that; the particles of a gas move independently of each other, the particles in a gas move rapidly, the particles in a gas are far apart.
Hope it helps.
<span>C2Br2
First, we need to determine how many moles of the gas we have. For that, we'll use the Ideal Gas Law which is
PV = nRT
where
P = pressure (1.10 atm = 111458 Pa)
V = volume (10.0 ml = 0.0000100 m^3)
n = number of moles
R = Ideal gas constant (8.3144598 (m^3 Pa)/(K mol) )
T = Absolute temperature
Solving for n, we get
PV/(RT) = n
Now substituting our known values into the formula.
(111458 Pa * 0.0000100 m^3) / (288.5 K * 8.3144598 (m^3 Pa)/(K mol))
= (1.11458/2398.721652) mol
= 0.000464656 mol
Now let's calculate the empirical formula for this compound.
Atomic weight carbon = 12.0107
Atomic weight bromine = 79.904
Relative moles carbon = 13.068 / 12.0107 = 1.08802984
Relative moles bromine = 86.932 / 79.904 = 1.087955547
So the relative number of atoms of the two elements is
1.08802984 : 1.087955547
After dividing all numbers by the smallest, the ratio becomes
1.000068287 : 1
Which is close enough to 1:1 for me to consider the empirical formula to be CBr
Now calculate the molar mass of CBr
12.0107 + 79.904 = 91.9147
Finally, let's determine if the compound is actually CBr, or something like C2Br2, or some other multiple. Using the molar mass of CBr, multiply by the number of moles and see if the result matches the mass of the gas. So
91.9147 g/mol * 0.000464656 mol = 0.042708701 g
0.0427087 g is a lot smaller than 0.08541 g. So the compound isn't exactly CBr. Let's divide them to see what the factor is.
0.08541 / 0.0427087 = 1.99982673
1.99982673 is close enough to 2 to within the number of significant digits we have for me to claim that the formula for the unknown gas isn't CBr, but instead is C2Br2.</span>
I think its c because solid,liquid nor plasma really fits to the description and i don't really know the last one so the best option is probably C.
Frequency = velocity (aka speed) / wave length