G=mg=>m=G/g=16680/9.8=1702 kg
p=mv=>v=p/m=54400/1702=32 m/s
Newton's laws allow to find the result for the movement of the basketballl:
-
On the vertical axis the ball is on the ground.
- On the horizontal axis the ball is accelerating in the direction of the pushing force.
Newton's laws establish the relationship between the forces on objects:
- The 1st law states that if the net force is zero the object is stationary or with constant speed.
- The 2nd law gives a relation of the force with the mass and the acceleration of the body.
- The 3rd. Law states that the force appears in pairs, one on each body with the same magnitude, but in the opposite direction.
Let's apply these principles to the ball's motion diagram.
The two vertical forces are in the opposite direction, one is due to the weight of the body and the other is the attraction of the earth to the support of the ball, they are of equal magnitude, not their action-reaction force and reluctant because it is applied to the same body
In conclusion we can say that the ball is on the ground.
The two horizontal forces are in the opposite direction, the thrust force is greater than the friction therefore using Newton's second law the ball must be accelerating in the direction of the thrust force.
In conclusion we can say that the ball is accelerating in the direction of the pushing force.
In conclusion using Newton's laws we can find the result for the motion of the basketball:
-
On the vertical axis the ball is on the ground.
- On the horizontal axis the ball is accelerating in the direction of the pushing force.
Learn more about Newton's laws here: brainly.com/question/3715235
C. They all transfer energy
Distance = speed/time
width/distance given is 2.9*10^3 miles
1 mile=1.6*10^6mm
total distance now is 2.9*1.6*10^9
speed is 25 mm/yr
plug the values,
therefore the rift takes approximately 185600000 years for a width <span>of 2.9 x 10^3 mi.</span>
For this case, in the next item we have gravitational potential energy:
An apple in a tree.
Suppose we define our reference system at the floor level.
Suppose the apple is at a height h from the floor and has mass m.
The gravitational potential energy of the apple is given by:
U = mgh
Where,
m: apple mass
h: height of the apple with respect to the floor
g: acceleration due to gravity
Answer:
C) an apple on a tree