<span>137200000 watts
or 137200 kilowatts
The formula for power is
P= dhrg
Where
P = Power in watts
d = density of water (~1000 kg/m^3)
h = height in meters
r = flow rate in cubic meters per second,
g = acceleration due to gravity of 9.8 m/s^2,
Plugging in the known values, we get
P = 1000 kg/m^3 * 80 m * 175 m^3/s * 9.8 m/s^2
P = 80000 kg/m^2 * 175 m^3/s * 9.8 m/s^2
P = 14000000 kg m/s * 9.8 m/s^2
P = 137200000 kg m^2/s^3
P = 137200000 watts
or 137200 kilowatts
The above figure assumes 100% efficiency which is impossible. A good efficiency would be 90% so the actual power available would be close to 0.90 * 137200 = 123480 kilowatts</span>
A compass would work differently on the moon than the Earth because Earth's magnetic field is between 25,000 and 65,000 NanoTeslas. Whereas, the Moons magnetic field is about 2,500-6,500 and some parts of the moon have nonexistent magnetic fields.
You have to go to settings and there will be options im guessing!
Answer: y(t)= 1/π^2 sin(6*π^2*t)
Explanation: In order to solve this problem we have to consider the general expression for a harmonic movement given by:
y(t)= A*sin (ω*t +φo) where ω is the angular frequency. A is the amplitude.
The data are: ν= 3π; y(t=0)=0 and y'(0)=6.
Firstly we know that 2πν=ω then ω=6*π^2
Then, we have y(0)=0=A*sin (6*π^2*0+φo)= A sin (φo)=0 then φo=0
Besides y'(t)=6*π^2*A*cos (6*π^2*t)
y'(0)=6=6*π^2*A*cos (6*π^2*0)
6=6*π^2*A then A= 1/π^2
Finally the equation is:
y(t)= 1/π^2 sin(6*π^2*t)
It helps the cell by making sure everything gets circulated throughout the cell.