Answer:
T=502.5N
Ax=171.8N
Explanation:
The computation of the tension T in the rope and the forces exerted by the pin at A is shown below:
vertical forces sum = Ay + Tsin20 + T - 245 - 883 = 0
Now
horizontal forces sum = Ax - Tcos70
Now Moment about B
-Ay × 4.8 + 245 × 2.4 + 883 × 1.8=0
Ay=453.6N
Now substitute in sum of vertical forces T=502.5N
Ax=171.8N
Answer:
Since strong nuclear forces involve only nuclear particles (not electrons, bonds, etc) items 3 and 4 are eliminated.
Again item 2 refers to bonds between atoms and is eliminated.
This leaves only item 1.
Nuclear forces are very short range forces between components of the nucleus.
Weak nuclear forces are trillions of times smaller than strong forces.
Gravitational forces are much much smaller than the weak nuclear force.
Since momentum is a vector quantity, take any direction as positive and other as negative. Answer won't change.
Answer:
V = 10.88 m/s
Explanation:
V_i =initial velocity = 0m/s
a= acceleration= gsinθ-
cosθ
putting values we get
a= 9.8sin25-0.2cos25= 2.4 m/s^2
v_f= final velocity and d= displacement along the inclined plane = 10.4 m
using the equation


v_f= 7.04 m/s
let the speed just before she lands be "V"
using conservation of energy
KE + PE at the edge of cliff = KE at bottom of cliff
(0.5) m V_f^2 + mgh = (0.5) m V^2
V^2 = V_f^2 + 2gh
V^2 = 7.04^2 + 2 x 9.8 x 3.5
V = 10.88 m/s