Answer:
823.46 kgm/s
Explanation:
At 9 m above the water before he jumps, Henri LaMothe has a potential energy change, mgh which equals his kinetic energy 1/2mv² just as he reaches the surface of the water.
So, mgh = 1/2mv²
From here, his velocity just as he reaches the surface of the water is
v = √2gh
h = 9 m and g = 9.8 m/s²
v = √(2 × 9 × 9.8) m/s
v = √176.4 m/s
v₁ = 13.28 m/s
So his velocity just as he reaches the surface of the water is 13.28 m/s.
Now he dives into 32 cm = 0.32 m of water and stops so his final velocity v₂ = 0.
So, if we take the upward direction as positive, his initial momentum at the surface of the water is p₁ = -mv₁. His final momentum is p₂ = mv₂.
His momentum change or impulse, J = p₂ - p₁ = mv₂ - (-mv₁) = mv₂ + mv₁. Since m = Henri LaMothe's mass = 62 kg,
J = (62 × 0 + 62 × 13.28) kgm/s = 0 + 823.46 kgm/s = 823.46 kgm/s
So the magnitude of the impulse J of the water on him is 823.46 kgm/s
Radio waves
infrared
x-rays
and red and blue light are not a thing, their on a color spectrum called visible light.
Answer:
The frequency increases with a shorter horn <em>(Option B)</em>.
Explanation:
The length of the horn determines the distance along which the wave travels; simply called the wavelength. Therefore, a short horn tube will produce a short wavelength and vice versa.
Sound waves have various characteristics that define pitches in musical instruments and these characteristics are interdependent on each other.
in this case, the frequency and the frequency and the wavelength are related.
The relationship between the wavelength and its frequency is given as:
<em> </em><em>c = f λ </em><em> </em>
<em>where 'c' is the speed of sound through the instrument; 'f ' is the frequency and 'λ' is the wavelength.</em>
Let's assume that the speed at which the musician blows air into the mouthpiece remains constant, an increase in wavelength will cause a decrease in frequency. Conversely, as the tube of the horn becomes shorter the frequency increases.
10+15+5+20=50ohms
5 ohms is a tenth of the total resistance.
226/10= 22.6 volts across 5 ohm resistor