Answer:
W = 1.49 10⁻¹¹ kg
Explanation:
For this problem, let's use Newton's equation of equilibrium
F - W = 0
F = W (1)
Strength can be found from the definition of pressure
P = F / A
F = P A
The radiation pressure for a reflective surface is
P = 2 I / c)
We substitute in equation 1
2 I / c A = W
The intensity is defined by the ratio of the power between the area
I = P / A
P = I A
We substitute
2 P / c = W
W = 2 2.24 10-3 / 3 108
W = 1.49 10⁻¹¹ kg
Average speed = (total distance covered) / (time to cover the distance)
Total distance covered = (99km + 80km) = 179 km
Time to cover the distance = 8 hours
Average speed = (179km / 8hours)
Average speed = 22.375 km/hour
The ballerinas takes advantage of the moment of interia by not stretching her hands out etc. and by doing so decreasing the moment of interia and therefore a smaller torque is produced to rotate at a faster rate.
Answer:
a. +10.9μC
b. 0.600N and downward
Explanation:
To determine the magnitude of the charge, we use the force rule that exist between two charges which us expressed as
F=(kq₁q₂)/r²
since q₁=-0.55μC and the force it applied on the charge above it is upward,we can conclude that the second charge is +ve, hence we calculate its magnitude as
q₂=Fr²/kq₁
q₂=(0.6N*0.3²)/(9*10⁹*0.55*10⁻⁶)
q₂=0.054/4950
q₂=1.09*10⁻⁵c
q₂=10.9μC.
Hence the second charge is +10.9μC
b. From the rule of charges which state that like charges repel and unlike charges attract, we can conclude that the two above charges will attract since they are unlike charges. Hence the direction of the force will be downward into the second charge and the magnitude of the force will remain the same as 0.600N