Answer:
3kg
Explanation:
impulse = MV
then
m1v1=m2v2
when the values are subtitude
then
m2=1.2*25/10
m2=<em>3</em><em>0</em><em>k</em><em>g</em><em>/</em><em>/</em>
Look first for the relation between deBroglie wavelength (λ) and kinetic energy (K):
K = ½mv²
v = √(2K/m)
λ = h/(mv)
= h/(m√(2K/m))
= h/√(2Km)
So λ is proportional to 1/√K.
in the potential well the potential energy is zero, so completely the electron's energy is in the shape of kinetic energy:
K = 6U₀
Outer the potential well the potential energy is U₀, so
K = 5U₀
(because kinetic and potential energies add up to 6U₀)
Therefore, the ratio of the de Broglie wavelength of the electron in the region x>L (outside the well) to the wavelength for 0<x<L (inside the well) is:
1/√(5U₀) : 1/√(6U₀)
= √6 : √5
E all of the answers above correlate to the student and his skateboard
Answer:
In the picture
Explanation:
I hope that it's a clear solution and explanation, hope that helps.