"the field of force surrounding a body of finite mass in which anotherbody would experience an attractive force that is proportional to theproduct of the masses and inversely proportional to the square of thedistance between <span>them."
</span>
Answer:
691.13 nm
Explanation:
d = width of the slit = 0.11 x 10⁻³ m
θ = angle of diffraction pattern = 0.72° degree
λ = wavelength of the light = ?
m = order = 2 (since second minimum)
for the second minimum diffraction pattern we use the equation
d Sinθ = m λ
Inserting the values
(0.11 x 10⁻³) Sin0.72 = (2) λ
λ = 691.13 x 10⁻⁹ m
λ = 691.13 nm
Answer:
The force acting on a body is always equal to the product of the mass of the body and its acceleration.
Explanation:
The force of a body is defined as the product of mass and acceleration of the body.
According to Newton's second law, wherever there is a change in momentum of the body for an interval of time, there is a force acting on it.
F = (mv - mu) / t
= m (v -u) /t
= m a
Where,
(v - u)/t - is the change in velocity of the body in the interval of time. It is equal to the acceleration of the body.
Hence, the equation for the force for any body becomes, F = m x a
Answer:
Here we do not have the vector, but I will try to give a kinda general solution to this type of problem.
If the vector is written as (a, b, c) we have that the force in the x-axis is of a Newtons, in the y-axis is of b Newtons, and in the z-axis is of c Newtons.
Then, we can calculate the total magnitude of this force as:
F = √( a^2 + b^2 + c^2)
wich gives us the total magnitude of the force, but not a direction or anything like that, this is just a scalar.