A is the only logical answer
Answer:
a. 572Btu/s
b.0.1483Btu/s.R
Explanation:
a.Assume a steady state operation, KE and PE are both neglected and fluids properties are constant.
From table A-3E, the specific heat of water is
, and the steam properties as, A-4E:

Using the energy balance for the system:

Hence, the rate of heat transfer in the heat exchanger is 572Btu/s
b. Heat gained by the water is equal to the heat lost by the condensing steam.
-The rate of steam condensation is expressed as:

Entropy generation in the heat exchanger could be defined using the entropy balance on the system:

Hence,the rate of entropy generation in the heat exchanger. is 0.1483Btu/s.R
Easy !
Take any musical instrument with strings ... a violin, a guitar, etc.
The length of the vibrating part of the strings doesn't change ...
it's the distance from the 'bridge' to the 'nut'.
Pluck any string. Then, slightly twist the tuning peg for that string,
and pluck the string again.
Twisting the peg only changed the string's tension; the length
couldn't change.
-- If you twisted the peg in the direction that made the string slightly
tighter, then your second pluck had a higher pitch than your first one.
-- If you twisted the peg in the direction that made the string slightly
looser, then your second pluck had a lower pitch than the first one.
Answer:
98 kg
Mass is given as 10 kg. Therefore, Weight = 10 kg * 9.8 m/s^2. Weight = 98 kg.m/s^2. = 98 Newtons.
Explanation:
plz mark me brainleast
<span>Volume of air in the balloon 1.01 x 10^6 L
Density of air is 1.20 g/l
Mass = Density X Volume
So mass of the air in the Balloon= ( 1.01 x 10^6) X 1.20 = 1.212 x 10^6 g
As the air is heated, the volume of air in the balloon expands to 1.10x 10^6 L
Density= Mass/ voume
So the Density of heated air = 1.212 x 10^6/ 1.10x 10^6 = 1.101 g/l
The answer is 1.101 g/l.</span>