Explanation:
Red, green, and blue are therefore called additive primaries of light. ... When you block two lights, you see a shadow of the third color—for example, block the red and green lights and you get a blue shadow. If you block only one of the lights, you get a shadow whose color is a mixture of the other two.
First, your definition of a shadow is incorrect. A shadow is an area that receives less light than its surroundings because a specific source of light is blocked by whatever is "casting" the shadow. Your example of being outside reveals this. The sky and everything around you in the environment (unless you are surrounded by pitch black buildings) is sending more than enough light into your shadow, to reveal the pen to your eyes. The sky itself diffuses the sunlight everywhere, and the clouds reflect plenty of light when they are not directly in front of the Sun.
If you are indoors and have two light bulbs, you can throw two shadows at the same time, possibly of different darknesses, depending on the brightness of the light bulbs.
It can take a lot of work to get a room pitch black. One little hole or crack in some heavy window curtains can be enough to illuminate the room. There are very few perfectly dark shadows.
Electrons that are further away from the nucleus have more energy. As they enter an "excited" state, they jump up orbits.
Complete Question
Suppose you have three identical metal spheres, A, B, and C. Initially sphere A carries a charge q and the others are uncharged. Sphere A is brought in contact with sphere B, and then the two are separated. Spheres CC and BB are then brought in contact and separated. Finally spheres AA and CC are brought in contact and then separated. What is the final charge on the sphere B, in terms of q?
a. 3/8q
b. 1/4q
c. 3/4q
d. q
e. 5/8q
f. 1/3q
g.1/2q
h. 0
Answer:
The correct option is b
Explanation:
From the question we are told that
The charge carried by A is q C
The charge carried by B is 0 C
The charge carried by C is 0 C
When A and B are brought close and then separated the charge carried by A and B is mathematically evaluated as

When C and B are brought close and then separated the charge carried by C and B is mathematically evaluated as

When C and A are brought close and then separated the charge carried by C and A is mathematically evaluated as

Looking at these calculation we can see that the charge carried by B is

Answer:
Explanation:
a ) Thermal efficiency = work output / heat input
= .38 MW / 1 MW = .38
OR 38%
Heat rejected at cold reservoir = heat input - work output
1 MW - .38 MW
= 0.62 MW.
b ) For reversible power output
efficiency = T₂ - T₁ / T₂ ; T₂ is temperature of hot reservoir and T₁ is temperature of cold reservoir.
= 1200 - 300 / 1200 = 900 / 1200
= .75
or 75%
rate at which heat is rejected
= 1 - .75 x 1
= .25 MW .