Answer:
θ = 1.591 10⁻² rad
Explanation:
For this exercise we must suppose a criterion when two light sources are considered separated, we use the most common criterion the Rayleigh criterion that establishes that two light sources are separated census the central maximum of one of them coincides with the first minimum of the other source
Let's write the diffraction equation for a slit
a sin θ = m λ
The first minimum occurs for m = 1, also field in these we experience the angles are very small, we can approximate the sin θ = θ
θ = λ / a
In our case, the pupil is circular, so the system must be solved in polar coordinates, so a numerical constant is introduced.
θ = 1.22 λ / D
Where D is the diameter of the pupil
Let's apply this equation to our case
θ = 1.22 600 10⁻⁹ / 0.460 10⁻²
θ = 1.591 10⁻² rad
This is the angle separation to solve the two light sources
It is important to note that the electromagnetic spectrum has a variety of wavelength and frequency of light in it. Some lights we can see, while others are not visual to our naked eye. It is actually very important to determine the kind of light as different lights have different wavelengths and frequencies. some lights are of very high frequency like the gamma rays, while others are of far lower frequency. <span />
Answer:
If you ring the doorbell and no one opens the door, you'll infer that no one is home rather than continuing to ring the doorbell to an empty house. Being able to understand this and look for another solution is another example of mental flexibility.
Explanation: