Answer:
The change in momentum = -20000 kg m/s.
Explanation:
Mass m = 1000 kg
speed v₁ = 20 m/s
speed v₂ = 0 m/s
We know that,
The change in momentum
ΔP = m (Δv)
ΔP = m (v₂ - v₁)
= 1000 (0 - 20)
= 1000 (-20)
= -20000 kg m/s
Thus, the change in momentum = -20000 kg m/s.
Note: negative sign indicates that the velocity is reducing when it hits the barrier.
B is the right answer glad I could help !!
Hello there,
400 meters= 0.4 km
Time= Distance / speed
= 0.4 / 69
= 0.0057971014492754 hr
= 0.35 min
Hope this helps :))
~Top
<span>Well, since it's in the shape of a wheel and the person walks around the edge of it, they must have a centripetal acceleration. Since a=v^2/r you can solve for "v" using 2.20 as your "a" and 59.5 as your "r" (r=half of the diameter).
</span> a=v^2/r
v=(a*r)^(1/2)=((2.20)*(59.5))^(1/2)=<span>
<span>11.44 m/s.
</span></span><span> After you get "v," plugged that into T=2 pi r/ v. This will give you the 1rev per sec.
</span> T=2 pi r/ v= T=(2)*(pi)*(59.5)/(11.44)= <span>
<span>32.68 rev/s
</span></span> Use dimensional analysis to get rev per min (1rev / # sec) times (60 sec/min).
(32.68 rev/s)(60 s/min)=<span>
<span>1960.74 rev/min
</span></span>
Answer:
T = 712.9 N
Explanation:
First, we will find the speed of the wave:
v = fλ
where,
v = speed of the wave = ?
f = frequency = 890 Hz
λ = wavelength = 0.1 m
Therefore,
v = (890 Hz)(0.1 m)
v = 89 m/s
Now, we will find the linear mass density of the wire:

where,
μ = linear mass density of wie = ?
m = mass of wire = 90 g = 0.09 kg
L = length of wire = 1 m
Therefore,

μ = 0.09 kg/m
Now, the tension in wire (T) will be:
T = μv² = (0.09 kg/m)(89 m/s)²
<u>T = 712.9 N</u>