Answer:
Everything that has mass and takes up space is matter. Every day, you find something usual that either does't have mass or else don't take up space. Those things are non-matter. Basically, any type of energy or any abstract concept is an example of something that does not have matter.
Explanation:
Answer:
a) Neutralisation
b) Combustion
c) Synthesis
d) Decomposition
e) Neutralisation
f) Double Displacement Reaction
h) Single Displacement Reaction
i) Double Displacement Reaction
j) Combustion
Explanation:
Synthesis is a reaction where various compounds/ elements react to form a totally new compound.
Decomposition is a reaction where a single compound breaks down into several components due to excessive heating or energy applied.
Single Displacement Reaction is a type of chemical reaction where an element reacts with a compound and takes the place of another element in that compound.
Double Displacement Reaction is a type of chemical reaction where two compounds react, and the positive ions (cation) and the negative ions (anion) of the two reactants switch places, forming two new compounds or products.
Combustion is a reaction where a compound/ element oxidises in the presence of Oxygen.
Neutralisation reaction is a reaction where an acid reacts with a base to form a salt.
B is the correct answer! I learned this in class last week :)
Answer:
It would be nothing. Quite literally nothing. No Oxygen, no dirt, no anything.
Explanation:
Answer:
C. Gain in electron(s) resulting in a decrease of oxidation number.
Explanation:
Redox reactions are reactions involving transfer of of electron between two species (reduction specie) and (oxidation species) and change resulting in change in oxidation number.
Reduction in terms of redox reaction is the specie that accepts electron(s) and gets "reduced" since its oxidation state has been reduced.
For example
Cl + e- → Cl⁻
The above reaction is an example of reduction reaction taking place in a redox reaction. We can see that Chlorine oxidation state was changed from (0) to (-1) state.