<span>There is only one formula to use and we should assume ideal gas. This equation is: PV=nRT. For the following questions manipulate this equation to get the answer.
1. n = PV/RT = (249*1000 Pa)(15.6 L)(1 m^3/1000 L)/(8.314 Pa-m^3/mol-K))(21+273) = 1.59 mol
2. P = nRT/V = (1.59)(8.314)(51+273)/(15.6/1000)(1000) = 274.55 kPa
3. Since the answer in #2 is more than 269 kPa, then the tires will likely burst.
4. Reduce pressure way below the limit 269 kPa.</span>
Answer:i don't rlly get the question but this is what i found on the internet :/
Explanation:
When the temperature is increased, the position of equilibrium moves in the endothermic direction to reduce the temperature. ... This means that as the temperature is increased, the position of equilibrium moves to the left, and the yield of ammonia decreases.
Answer:
Compounds 1 and 2 are not the same
Explanation:
To solve this question we need to find the molecular formula of the compounds converting the mass of each atom to moles. Molecular formula is defined as the simplest whole number ratio of atoms present in a molecula:
Compound 1:
<em>Moles Tin: </em>
5.63g Sn * (1mol / 118.7g) = 0.04743 moles
<em>Moles Cl:</em>
3.37g Cl * (1mol / 35.45g) = 0.09506 moles
Ratio Cl:Sn
0.09506 moles / 0.04743 moles = 2
Molecular formula SnCl₂
Compound 2:
<em>Moles Tin: </em>
2.5g Sn * (1mol / 118.7g) = 0.02106 moles
<em>Moles Cl:</em>
2.98g Cl * (1mol / 35.45g) = 0.08406 moles
Ratio Cl:Sn
0.08406 moles / 0.02106 moles = 4
Molecular formula SnCl₄
Compounds 1 and 2 are not the same because molecular formulas are different.
Explanation:
here s the answer. Feel free to ask for more chem help