<span>d.rotating counterclockwise and slowing down
This is a matter of understanding the notation and conventions of angular rotations. Positive rotations are counter clockwise and negative rotations are clockwise. An easy way to remember this is the "right hand rule". Make a closed fist with your right hand and have the thumb sticking outwards. If you orient your thumb such that it's pointing in the direction of the positive value along the axis, your fingers will be curled in the positive rotational direction. So in the described scenario, the sphere is rotating in the positive direction (counter clockwise) and decelerating due to the negative angular acceleration. That immediately indicates that options "a", "b", and "e" are wrong since they mention the sphere going clockwise at the beginning. Of the two remaining options "c" and "d", we can discard option "c" since it has the rotation speeding up, and that leaves us with option "d" where the sphere is rotating counter clockwise and slowing down.</span>
Answer:

Explanation:
Acceleration is the change in velocity over time.

The object accelerates <em>from</em> 45 meters per second <em>to </em>10 meters per second in 5 seconds. Therefore,

Substitute the values into the formula.

Solve the numerator.

Divide.


The acceleration of the object is -7 meters per square second. The acceleration is negative because the object's velocity decreases and the object slows down.
Answer:
See explanation
Explanation:
The degradation of the drug is a first order process;
Hence;
ln[A] = ln[A]o - kt
Where;
ln[A] = final concentration of the drug
ln[A]o= initial concentration of the drug = 5 gm/100
k= degradation constant = 0.05 day-1
t= time taken
When [A] =[ A]o - 0.5[A]o = 0.5[A]o
ln2.5 = ln5 - 0.05t
ln2.5- ln5 = - 0.05t
t= ln2.5- ln5/-0.05
t= 0.9162 - 1.6094/-0.05
t= 14 days
b) when [A] = [A]o - 0.9[A]o = 0.1[A]o
ln0.5 = ln5 -0.05t
t= ln0.5 - ln5/0.05
t= -0.693 - 1.6094/-0.05
t= 46 days
Answer:
a) v = 0.9167 m / s, b) A = 0.350 m, c) v = 0.9167 m / s, d) A = 0.250 m
Explanation:
a) to find the velocity of the wave let us use the relation
v = λ f
the wavelength is the length that is needed for a complete wave, in this case x = 5.50 m corresponds to a wavelength
λ = x
λ = x
the period is the time for the wave to repeat itself, in this case t = 3.00 s corresponds to half a period
T / 2 = t
T = 2t
period and frequency are related
f = 1 / T
f = 1 / 2t
we substitute
v = x / 2t
v = 5.50 / 2 3
v = 0.9167 m / s
b) the amplitude is the distance from a maximum to zero
2A = y
A = y / 2
A = 0.700 / 2
A = 0.350 m
c) The horizontal speed of the traveling wave (waves) is independent of the vertical oscillation of the particles, therefore the speed is the same
v = 0.9167 m / s
d) the amplitude is
A = 0.500 / 2
A = 0.250 m