1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
ivanzaharov [21]
4 years ago
15

Initially, a particle is moving at 5.25 m/s at an angle of 35.5° above the horizontal. Three seconds later, its velocity is 6.0

3 m/s at an angle of 56.7° below the horizontal. What was the particle's average acceleration during these 3.00 seconds in the x-direction (enter first) and the y-direction?
Physics
1 answer:
ivolga24 [154]4 years ago
6 0

Answer:

 a =( -0.32 i ^ - 2,697 j ^)  m/s²

Explanation:

This problem is an exercise of movement in two dimensions, the best way to solve it is to decompose the terms and work each axis independently.

Break down the speeds in two moments

initial

  v₀ₓ = v₀ cos θ

  v₀ₓ = 5.25 cos 35.5

v₀ₓ = 4.27 m / s

   v_{oy} = v₀ sin θ

 v_{oy}= 5.25 sin35.5

v_{oy} = 3.05 m / s

Final

vₓ = 6.03 cos (-56.7)

vₓ = 3.31 m / s

v_{y} = v₀ sin θ

v_{y} = 6.03 sin (-56.7)

v_{y} = -5.04 m / s

Having the speeds and the time, we can use the definition of average acceleration that is the change of speed in the time order

    a = (v_{f} - v₀) /t

    aₓ = (3.31 -4.27)/3

    aₓ = -0.32 m/s²

    a_{y} = (-5.04-3.05)/3

   a_{y} =  -2.697 m/s²

You might be interested in
A car is traveling at 120 km/h (75 mph). When applied the braking system can stop the car with a deceleration rate of 9.0 m/s2.
Bumek [7]

Answer:

the number of additional car lengths approximately it takes the sleepy driver to stop compared to the alert driver is 15

Explanation:

Given that;

speed of car V  = 120 km/h = 33.3333 m/s

Reaction time of an alert driver = 0.8 sec

Reaction time of an alert driver = 3 sec

extra time taken by sleepy driver over an alert driver = 3 - 0.8 = 2.2 sec

now, extra distance that car will travel in case of sleepy driver  will be'

S_d = V × 2.2 sec

S_d = 33.3333 m/s × 2.2 sec

S_d = 73.3333 m

hence, number of car of additional car length  n will be;

n = S_n / car length

n = 73.3333 m / 5m

n = 14.666 ≈ 15

Therefore, the number of additional car lengths approximately it takes the sleepy driver to stop compared to the alert driver is 15

8 0
3 years ago
Explain why pulleys are in the lever family.
Aleks04 [339]

Answer:

The leverage or mechanical advantage of pulleys is less obvious, but you can "gang" multiple pulleys together into two sets (blocks) and run the ropes back and forth between the two sets to increase the number of lengths of rope running between them. One end of the rope is connected (fixed) to one of the blocks, and you get to pull on the other end after it is passed back and forth between the blocks of pulleys. This is sometimes called a block and tackle arrangement. With a hook on each side of the block set, you can move a heavy load much like levers do, by multiplying the force. You have to pull more rope just like you have to move a lever more on one side of the fulcrum as compared to the other. When you get all the rope pulled out that you can, you can not move the load anymore because you have become "two-blocked" which means the two blocks are together. Credits to: Moin Khan

3 0
3 years ago
How do very high density objects appear in an ultrasound?
evablogger [386]
<span>Density is entirely unrelated to an object's size. It is a property of a given</span>
7 0
3 years ago
A batter hits a 0.140-kg baseball that was approaching him at 19.5 m/s and, as a result, the ball leaves the bat at 44.8 m/s in
Arada [10]

Answer:

5295.3 N

Explanation:

According to law of momentum conservation, the change in momentum of the ball shall be from the momentum generated by the batter force

mv + P = mV

P = mV - mv = m(V - v)

Since the velocity of the ball before and after is in opposite direction, one of them is negative

P = 0.14(44.8 - (-19.5)) = 9 kg m/s

Hence the force exerted to generate such momentum within 1.7ms (0.0017s) is

F = P/t = 9/0.0017 = 5295.3 N

4 0
3 years ago
A diffraction grating has 500 slits/mm. What is the longest wavelength of light for which there will be a third-order maximum?
Alexxandr [17]

Answer:

The longest wavelength of light  is 666.7 nm

Explanation:

The general form of the grating equation is

mλ = d(sinθi + sinθr)

where;

m is third-order maximum = 3

λ is the wavelength,

d is the slit spacing (m/slit)

θi  is the incident angle

θr is the diffracted angle

Note: at longest wavelength, sinθi + sinθr = 1

λ = d/m

d = 1/500 slits/mm

λ = 1 mm/(500 *3) = 1mm/1500 = 666.7 X 10⁻⁶ mm = 666.7 nm

Therefore, the longest wavelength of light  is 666.7 nm

8 0
3 years ago
Other questions:
  • Priscilla is driving her car on a busy street and Harvey passes her on his motorcycle. What will happen to the sound from his mo
    8·2 answers
  • What is the primary technique for determining the absolute age of rock
    6·1 answer
  • 4. A 75 kg bobsled is pushed along a horizontal surface by two athletes. After the
    9·1 answer
  • Scientists who possess this attitude question the results of experiments.
    14·2 answers
  • How is fitness walking beneficial?
    11·2 answers
  • Which statements describe the Gironde ecosystem
    9·1 answer
  • Which of the following statements is true?
    7·1 answer
  • Why do cars stay in motion.
    5·2 answers
  • a ball of mass 0.5 kg is released from rest at a height of 30 m. how fast is it going when it hits the ground? acceleration due
    5·1 answer
  • Physics 10
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!