Texture hope this helps! :)
This is sort of simple. 2 grams of X can combine with 4 grams of Y to form XY. Y is 2 times the amount of grams in X. So if there are 11 grams of X there are 22 grams of Y to form XY. Or you could take 11 divided by 2 is 5.5 and then multiply 4 by 5.5 to get 22. If this is wrong please tell me I would be very happy to know.
Answer:
Tundra Biome
Explanation:
Permafrost is a type of soil that is frozen all year round. It consists of rocks, soils and ice. The ice or frost holds the earth materials together.
The tundra biome lies below the arctic circle close to the north pole. Most of the earth here is predominantly frozen all year round. A layer of glacier covers the surface and a deep lying layer of permafrost follows suit.
Some mountain tops capped with ice shows this tundra features.
Most tundras are termed cold deserts as they have little to no precipitation all year round. There is absence of vegetation cover as a result of low growing season of the plants.
Answer:
103239.89 days
Explanation:
Kepler's third law states that the square of the orbital period of a planet is directly proportional to the cube of the semi-major axis of its orbit.
a³ / T² = 7.496 × 10⁻⁶ (a.u.³/days²)
where,
a is the distance of the semi-major axis in a.u
T is the orbit time in days
Converting the mean distance of the new planet to astronomical unit (a.u.)
1 a.u = 9.296 × 10⁷ miles

Substituting the values into Kepler's third law equation;
(days)²

T = 103239.89 days
An estimate time T for the new planet to travel around the sun in an orbit is 103239.89 days
<span>1.37 m/s
Assuming her initial velocity is totally horizontal and her vertical velocity is only affected by gravity, let's first calculate how much time she has until she reaches the ledge 8.00 m below her.
d = 1/2AT^2
8.00m = 1/2 * 9.8 m/s^2 * T^2
Solve for T
8.00 m = 4.9 m/s^2 * T^2
Divide both sides by 4.9 m/s^2
1.632653061 s^2 = T^2
Take square root of both sides
1.277753 s = T
So we now know that she has 1.277753 seconds in which to reach a horizontal distance of 1.75 m. So how fast does she need to be going?
1.75 m / 1.277753 s = 1.369592 m/s
Since we only have 3 significant figures in our data, round the result to 3 figures giving 1.37 m/s</span>