Answer:
warm water holds the least amount of dissolved oxygen, so I would assume the answer would be D. a small pond could heat up easily. in addition, the water is calm and not moving in a pond
Answer:
Bedrock is the hard, solid rock beneath surface materials such as soil and gravel.
Bedrock can be made of most types of rock, such as granite, limestone, or sandstone.
Hope this helps!
Answer:
Option D. 230 J
Explanation:
We'll begin by calculating the temperature change of the iron. This can be obtained as follow:
Initial temperature (T₁) = 50 °C
Final temperature (T₂) = 75 °C
Change in temperature (ΔT) =?
ΔT = T₂ – T₁
ΔT = 75 – 50
ΔT = 25 °C
Thus, the temperature change of the iron is 25 °C.
Finally, we shall determine the amount of heat energy used. This can be obtained as follow:
Mass (M) = 20 g
Change in temperature (ΔT) = 25 °C
Specific heat capacity (C) = 0.46 J/gºC
Heat (Q) =?
Q = MCΔT
Q = 20 × 0.46 × 25
Q = 230 J
Thus, the amount of heat used was 230 J
Answer:
6 x 10⁵ kg Hg
Explanation:
The mass of mercury in the entire lake is found by multiplying the concentration of the mercury by the volume of the lake.
The volume of the lake is calculated in cubic feet:
V = (SA)x(depth) = (100mi²)(5280ft/mi)² x (20ft) = 5.57568 x 10¹⁰ ft³
Cubic feet are then converted to mL (1cm³=1mL)
(5.57568 x 10¹⁰ ft³) x (12in/ft)³ x (2.54cm/in)³ = 1.578856752 x 10¹⁵ mL
The mass of mercury is then found:
m = CV = (0.4μg/mL)(1g/10⁶μg)(1kg/1000g) x (1.578856752 x 10¹⁵ mL) = 6 x 10⁵ kg Hg