Answer:
Heat flows from the block at high temperature to the one with lower temperature
Explanation:
The direction of heat flow is from a body at higher temperature to one with a lower temperature.
- Temperature gradient determines the way and manner in which heat is dissipated.
- As a system tend to increase entropy, it ensures that heat moves from hotter body to a colder body.
- Heat movement here is by conduction as the body touches.
- When both bodies reaches the same temperature, thermal equilibrium is established.
Answer:
The mixture is not in equilibrium, the reaction will shift to the left.
Explanation:
<em>Based on the equilibrium:</em>
<em>Fe³⁺+ HSCN ⇄ FeSCN²⁺ + H⁺</em>
<em>kc = 30 = [FeSCN²⁺] [H⁺] / [Fe³⁺] [HSCN]</em>
Where [] are concentrations at equilibrium. The reaction is in equilibrium when the ratio of concentrations = kc
Q is the same expression than kc but with [] that are not in equilibrium
Replacing:
Q = [10.0M] [1.0M] / [0.1M] [0.1M]
Q = 1000
As Q > kc, the reaction will shift to the left in order to produce Fe³⁺ and HSCN untill Q = Kc
<em>
</em>
<em>
</em>
<em />
Answer:
I attached a photo of balanced equations but thats as much as I can help.
Explanation:
Explanation:
We will balance equation which describes the reaction between sulfuric acid and sodium bicarbonate: as follows.
Next we will calculate how many moles of
are present in 85.00 mL of 1.500 M sulfuric acid.
As, Molarity = 
1.500 M = 
n = 0.1275 mol
Now set up and solve a stoichiometric conversion from moles of
to grams of
. As, the molar mass of
is 84.01 g/mol.
= 21.42 g
So unfortunately, 15.00 grams of sodium bicarbonate will "not" be sufficient to completely neutralize the acid. You would need an additional 6.42 grams to complete the task.
if you have 1.27*10^-36= [Cu2+][X2-] then you can set both those values equal to x because they're stoichimetrically equal.
1.27*10^-36=x^2
Take the square root of both sides.
1.13*10^-18=x
That would be your solubility.