Answer:
I believe CDC I s the most reliable
Here's an example of a bar graph.
Answer:
<u>ATGGCCTA</u>
Explanation:
For this we have to keep in mind that we have a <u>specific relationship between the nitrogen bases</u>:
-) <u>When we have a T (thymine) we will have a bond with A (adenine) and viceversa</u>.
-) <u>When we have C (Cytosine) we will have a bond with G (Guanine) and viceversa</u>.
Therefore if we have: TACCGGAT. We have to put the corresponding nitrogen base, so:
TACCGGAT
<u>ATGGCCTA</u>
<u></u>
I hope it helps!
The first step to answering this item is to convert the given temperatures in °F to °C through the equation,
°C = (°F - 32)(5/9)
initial temperature: 72°F
°C = (72 - 32)(5/9) = 22.22°C
final temperature: 145°F
°C = (145 - 32)(5/9) = 62.78°C
Substituting to the equation,
H = mcpdT
H = (43 g)(0.903 J/g°C)(62.78 - 22.22)
H = 1574.82 J
<em>Answer: 1574.82 J</em>
Answer:
The maximum mass of carbon dioxide that could be produced by the chemical reaction is 70.6gCO_{2}
Explanation:
1. Write down the balanced chemical reaction:

2. Find the limiting reagent:
- First calculate the number of moles of hexane and oxygen with the mass given by the problem.
For the hexane:

For the oxygen:

- Then divide the number of moles between the stoichiometric coefficient:
For the hexane:

For the oxygen:

- As the fraction for the oxygen is the smallest, the oxygen is the limiting reagent.
3. Calculate the maximum mass of carbon dioxide that could be produced by the chemical reaction:
The calculations must be done with the limiting reagent, that is the oxygen.
