Newton's second law tells you:
Sum of forces on an object = ma
Here, the forces acting on the bundle are the tension in the string and the force of gravity, these two must combine to yield the acceleration of the bundle.
So we have:
T-mg = ma
or T=m(g+a)
We know m=8.7kg, we need to find a from the information
starting from rest, an accelerating object covers distance according to:
<span>dist = 1/2 at^2 </span>
to cover 1m in 1.8s, we have:
a=2d/t^2 = 2x1/1.8^2 = 0.62 m/s/s
Thus, the tension in the string is:
<span>T = m(g+a)
= 8.7</span>kg(9.8m/s/s+0.62m/s/s)
<span>
<span>T = 90.654 N
</span>
I hope my answer has come to your help. Thank you for posting your question here in Brainly. We hope to answer more of your questions and inquiries soon. Have a nice day ahead!
</span>
Answer:
The density of the sample is 36 g/cm³
Explanation:
m= 972g
l=3cm
V = l³ = 3³ = 27 cm³
density = mass/volume
= 972/27
= 36 g/cm³
Their 'degrees' are the same size. The difference between the Celsius
and Kelvin scales is their zero-point. Zero Kelvin is the absolute zero of
nature and Physics. Zero Celsius is the melting/freezing point of water,
273.15 higher than absolute zero.