Answer:
1+1=2 Unless this is a trick question. Then it's most likely 11.
Explanation:
Answer:
Number of moles = 2.89 mol
Explanation:
Given data:
Number of moles of sugar = ?
Mass of sugar = 990 g
Solution:
Formula:
Number of moles = mass/molar mass
Molar mass of C₁₂H₂₂O₁₁:
12× 12 + 22×1.008 + 16×11 = 342.2 g/mol
Number of moles = 990 g / 342.2 g/mol
Number of moles = 2.89 mol
D) They both look uniform (the same) throughout.
<h3>Further explanation</h3>
Pure substance can be any element or compound and is formed from one type of atom/molecule only
Meanwhile, the solution is included in a mixture consisting of 2 or more pure substance
Pure substance can be formed through a chemical process while the mixture is through a physical process
Mixture can be separated by physical processes into components of pure substance while pure substance cannot
The mixture itself consists of a homogeneous and heterogeneous solution
The mixture can be divided into a homogeneous mixture if the composition/ratio of each substance in the mixture is the same and a heterogeneous mixture if the ratio of the composition of the substances is not the same (can be varied) in each place.
Mixtures can also be divided into solutions, suspensions, and colloids based mainly on the size of the particles
Homogeneous mixture = Solution
Heterogeneous mixture = suspension, and
The mixture is located between suspension and solution = Colloid
Answer : The energy required to melt 58.3 g of solid n-butane is, 4.66 kJ
Explanation :
First we have to calculate the moles of n-butane.

Given:
Molar mass of n-butane = 58.12 g/mole
Mass of n-butane = 58.3 g
Now put all the given values in the above expression, we get:

Now we have to calculate the energy required.

where,
Q = energy required
= enthalpy of fusion of solid n-butane = 4.66 kJ/mol
n = moles = 1.00 mol
Now put all the given values in the above expression, we get:

Thus, the energy required to melt 58.3 g of solid n-butane is, 4.66 kJ