Answer:

Explanation:
<u>Constant Acceleration Motion</u>
It's a type of motion in which the velocity of an object changes uniformly in time.
Being a the constant acceleration, vo the initial speed, vf the final speed, and t the time, the following relation applies:

The car initially travels at vo=7.35 m/s and accelerates at a rate of
during t=2.09 s.
The final velocity is:


Answer:
2 m/s²
Explanation:
From the question given above, the following data were obtained:
Initial velocity (u) = 0 m/s
Final velocity (v) = 12 m/s
Time (t) = 6 s
Acceleration (a) =?
The acceleration of the player can be obtained as follow:
v = u + at
12 = 0 + (a × 6)
12 = 6a
Divide both side by 6
a = 12 / 6
a = 2 m/s²
Thus, the acceleration of the player is 2 m/s²
The correct answer among the choices presented above is option A. Sound waves are considered as mechanical waves because they require a medium in which they can travel through. A mechanical wave is a wave that cannot transmit energy in a vacuum. It needs something to move energy.<span />
The impulse J is equal to the magnitude of the force applied to the cannonball times the time it is applied:

But the impulse is also equal to the change in momentum of the cannonball:

If we put the two equations together, we find

And since we know the magnitude of the average force and the time, we can calculate the change in momentum:
Answer:
d
Explanation:
Solution:-
- The Quantity of theory of money states:
M * V = P * Y
Where,
M = Money supply
V = Velocity of money exchange
P = The price level
Y = Real GDP
- By re-arranging the formula and solving for "V" we have:
V = P*Y / M
- The expression on right hand side increases if exchange of dollars increases.