Answer:
Se the explanation below
Explanation:
We do not feel these forces of these bodies, because they are very small compared to the force of Earth's attraction. Although its mass is greater than that of a human being, its mass is not compared to the Earth's mass. In order to understand this problem we will use numerical data and the universal gravitation formula, to give validity to the explanation.
<u>Force exerted by the Earth on a human being</u>
<u />

Where:
G = universal gravitation constant = 6.673*10^-11 [N*m^2/kg^2]
m1 = mass of the person = 80 [kg]
m2 = mass of the earth 5.97*10^24[kg]
r = distance from the center of the earth to the surface or earth radius = 6371 *10^3 [m]
<u />
Now replacing we have
![F = 6.673*10^{-11} *\frac{80*5.97*10^{24}}{(6371*10^{3})^{2} } \\F = 785[N]](https://tex.z-dn.net/?f=F%20%3D%206.673%2A10%5E%7B-11%7D%20%2A%5Cfrac%7B80%2A5.97%2A10%5E%7B24%7D%7D%7B%286371%2A10%5E%7B3%7D%29%5E%7B2%7D%20%20%7D%20%5C%5CF%20%3D%20785%5BN%5D)
<u>Force exerted by a building on a human being</u>
<u />
Where:
G = universal gravitation constant = 6.673*10^-11 [N*m^2/kg^2]
m1 = mass of the person = 80 [kg]
m2 = mass of the earth 300000 [ton] = 300 *10^6[kg]
r = distance from the building to the person = 2[m]
![F = 6.673*10^{-11}*\frac{80*300*10^6}{2^{2} } \\F= 0.4 [N]](https://tex.z-dn.net/?f=F%20%3D%206.673%2A10%5E%7B-11%7D%2A%5Cfrac%7B80%2A300%2A10%5E6%7D%7B2%5E%7B2%7D%20%7D%20%20%5C%5CF%3D%200.4%20%5BN%5D)
As we can see the force exerted by the Earth is 2000 times greater than that exerted by a building with the proposed data.
Answer:
7.08 m/s²
Explanation:
Given:
v₀ = 20.0 m/s
v = 105 m/s
t = 12.0 s
Find: a
v = at + v₀
105 m/s = a (12.0 s) + 20.0 m/s
a = 7.08 m/s²
Answer:
distance = 33.124 meters
Explanation:
To solve this question, we will use one of the equations of motion which is:
s = ut + 0.5a * t^2
where:
s is the distance that we want to get
u is the initial velocity = 0
a is the acceleration due to gravity = 9.8 m/sec^2
t is the time = 2.6 sec
Substitute with the givens in the equation to get the distance as follows:
s = ut + 0.5a * t^2
s = (0)(2.6) + 0.5(9.8)(2.6)^2
s = 33.124 meters
Hope this helps :)
Answer:
First one, third one, and fourth one
To find average speed, we divide the distance of travel (in this case, 400 metres) by the time she took, 32 seconds. Therefore: 12.5 seconds is her average speed.