Answer:

Explanation:
wavelength 
d = 0.190 mm = 0.190 × 10⁻³ m
D = 1.91 m
By using the formula:


The first maximum will appear at an angle
from the beam axis
The calculation for kinetic energy is this
KE = 1/2mv^2
KE = 1/2(50)(7^2)
KE = 1/2(49•50)
KE = 1225 kgm^2/s^2.
Or simply 1225 J.
She possess this much energy when she runs.
Answer:
5730 years
Explanation:
The half life of carbon-14 is 5730 years. If 50% of the carbon-14 remains, then exactly 1 half life has passed.
The half-life equation is:
A = A₀ (½)^(t / T)
where A is the remaining amount,
A₀ is the initial amount,
t is time,
and T is the half life.
In this case, A = ½ A₀ and T = 5730.
½ A₀ = A₀ (½)^(t / 5730)
½ = (½)^(t / 5730)
1 = t / 5730
t = 5730
Complete question:
while hunting in a cave a bat emits sounds wave of frequency 39 kilo hartz were moving towards a wall with a constant velocity of 8.32 meters per second take the speed of sound as 340 meters per second. calculate the frequency reflected off the wall to the bat?
Answer:
The frequency reflected by the stationary wall to the bat is 41 kHz
Explanation:
Given;
frequency emitted by the bat, = 39 kHz
velocity of the bat,
= 8.32 m/s
speed of sound in air, v = 340 m/s
The apparent frequency of sound striking the wall is calculated as;

The frequency reflected by the stationary wall to the bat is calculated as;

