<h2>
Density of the unknown liquid is 771.93 kg/m³</h2>
Explanation:
An empty graduated cylinder weighs 55.26 g
Weight of empty cylinder = 55.26 g = 0.05526 kg
Volume of liquid filled = 48.1 mL = 48.1 x 10⁻⁶ m³
Weight of cylinder plus liquid = 92.39 g = 0.09239 kg
Weight of liquid = 0.09239 - 0.05526
Weight of liquid = 0.03713 kg
We have
Mass = Volume x Density
0.03713 = 48.1 x 10⁻⁶ x Density
Density = 771.93 kg/m³
Density of the unknown liquid is 771.93 kg/m³
Answer: The force constant k is 10600 kg/s^2
Step by step:
Use the law of energy conservation. When the elevator hits the spring, it has a certain kinetic and a potential energy. When the elevator reaches the point of still stand the kinetic and potential energies have been transformed to work performed by the elevator in the form of friction (brake clamp) and loading the spring.
Let us define the vertical height axis as having two points: h=2m at the point of elevator hitting the spring, and h=0m at the point of stopping.
The total energy at the point h=2m is:

The total energy at the point h=0m is:

The two Energy values are to be equal (by law of energy conservation), which allows us to determine the only unknown, namely the force constant k:

Answer:
The angle of launch of the rubber band affects the initial velocity. The more the rubber band is stretched the more force it applies to return to equilibrium and the more kinetic energy that results in.