Answer: 15.66 °
Explanation: In order to solve this proble we have to consirer the Loretz force for charge partcles moving inside a magnetic field. Thsi force is given by:
F=q v×B = qvB sin α where α is teh angle between the velocity and magnetic field vectors.
From this expression and using the given values we obtain the following:
F/(q*v*B) = sin α
3.8 * 10^-13/(1.6*10^-19*8.9*10^6* 0.96)= 0.27
then α =15.66°
Jesus, jesus is always the answer
Answer:
e. The torque is the same for all cases.
Explanation:
The formula for torque is:
τ = Fr
where,
τ = Torque
F = Force = Weight (in this case) = mg
r = perpendicular distance between force an axis of rotation
Therefore,
τ = mgr
a)
Here,
m = 200 kg
r = 2.5 m
Therefore,
τ = (200 kg)(9.8 m/s²)(2.5 m)
<u>τ = 4900 N.m</u>
<u></u>
b)
Here,
m = 20 kg
r = 25 m
Therefore,
τ = (20 kg)(9.8 m/s²)(25 m)
<u>τ = 4900 N.m</u>
<u></u>
c)
Here,
m = 8 kg
r = 62.5 m
Therefore,
τ = (8 kg)(9.8 m/s²)(62.5 m)
<u>τ = 4900 N.m</u>
<u></u>
Hence, the correct answer will be:
<u>e. The torque is the same for all cases.</u>
Answer:
17.71N/m
Explanation:
The period of the spring is expressed according to the expression;

m is the mass of the object
k is the force constant
Given
m = 5.50kg
T = 3.50s
Substitute into the formula;

Hence the force constant of the spring is 17.71N/m