Answer:
A. The bullet with 0.006kg has more energy
B. When the mass is doubled the kinetic energy increases
Explanation:
Kinetic energy increases when mass increases
kinetic energy increases when velocity increases
The object that a satellite revolves around is the <em>central body</em> of the system. <em>(C)</em>
For example:
-- The central body of the solar system is the Sun.
-- The central body for TV satellites, GPS satellites, weather satellites, and the International Space Station is the Earth.
-- The central body for Phobos and Deimos is Mars.
This should be a pretty easy question to answer by elimination, when you notice that "Orbit", "Period", and "Rotation" are not "Bodies".
Solution :
Energy of photon, E = 6.7 eV
E =
joule
Kinetic energy, 


Kinetic energy at high speeds


r - 1 = 7130
r = 7130 + 1
r = 7131


![$v^2=C^2\left[1-\left(\frac{1}{7131}\right)^2\right]$](https://tex.z-dn.net/?f=%24v%5E2%3DC%5E2%5Cleft%5B1-%5Cleft%28%5Cfrac%7B1%7D%7B7131%7D%5Cright%29%5E2%5Cright%5D%24)

Δ = 1 - 0.99999999017
= 0.00000000933
Relative mass, 

kg
Answer:
34 m/s
Explanation:
Potential energy at top = kinetic energy at bottom + work done by friction
PE = KE + W
mgh = ½ mv² + Fd
mg (d sin θ) = ½ mv² + Fd
Solving for v:
½ mv² = mg (d sin θ) − Fd
mv² = 2mg (d sin θ) − 2Fd
v² = 2g (d sin θ) − 2Fd/m
v = √(2g (d sin θ) − 2Fd/m)
Given g = 9.8 m/s², d = 150 m, θ = 28°, F = 50 N, and m = 65 kg:
v = √(2 (9.8 m/s²) (150 m sin 28°) − 2 (50 N) (150 m) / (65 kg))
v = 33.9 m/s
Rounded to two significant figures, her velocity at the bottom of the hill is 34 m/s.
Answer:bill 5 m/s. Jack:10 m/s
Explanation:
Cuz I took it