<span><u>_Award brainliest if helped! </u>
B It’s a physical change because the water and the salt kept their original properties.</span>
By the law of universal gravitation, the gravitational force <em>F</em> between the satellite (mass <em>m</em>) and planet (mass <em>M</em>) is
<em>F</em> = <em>G</em> <em>M</em> <em>m</em> / <em>R </em>²
where
<em>• G</em> = 6.67 × 10⁻¹¹ m³/(kg•s²) is the universal gravitation constant
• <em>R</em> = 2500 km + 5000 km = 7500 km is the distance between the satellite and the center of the planet
Solve for <em>M</em> :
<em>M</em> = <em>F R</em> ² / (<em>G</em> <em>m</em>)
<em>M</em> = ((3 × 10⁴ N) (75 × 10⁵ m)²) / (<em>G</em> (6 × 10³ kg))
<em>M</em> ≈ 2.8 × 10¹⁴ kg
Answer:
a)N = 3.125 * 10¹¹
b) I(avg) = 2.5 × 10⁻⁵A
c)P(avg) = 1250W
d)P = 2.5 × 10⁷W
Explanation:
Given that,
pulse current is 0.50 A
duration of pulse Δt = 0.1 × 10⁻⁶s
a) The number of particles equal to the amount of charge in a single pulse divided by the charge of a single particles
N = Δq/e
charge is given by Δq = IΔt
so,
N = IΔt / e
N = 3.125 * 10¹¹
b) Q = nqt
where q is the charge of 1puse
n = number of pulse
the average current is given as I(avg) = Q/t
I(avg) = nq
I(avg) = nIΔt
= (500)(0.5)(0.1 × 10⁻⁶)
= 2.5 × 10⁻⁵A
C) If the electrons are accelerated to an energy of 50 MeV, the acceleration voltage must,
eV = K
V = K/e
the power is given by
P = IV
P(avg) = I(avg)K / e
= 1250W
d) Final peak=
P= Ik/e
=
P = 2.5 × 10⁷W
Answer:
120 m/s
Explanation:
Given:
v₀ = 0 m/s
a = 12 m/s²
t = 10 s
Find: v
v = at + v₀
v = (12 m/s²) (10 s) + 0 m/s
v = 120 m/s
To answer the following questions for this specific problem:
a. 11.48 secs
b. Vp = a*t*3.6 =
3*11.48*3.6 = 124.0 km/h
<span>c. 9.1 secs. </span>
I am hoping that this answer has satisfied your query about
and it will be able to help you.