To solve this problem we must consider the expressions of Stefan Boltzmann's law for which the rate of change of the radiation of energy H from a surface must be

Where
A = Surface area
e = Emissivity that characterizes the emitting properties of the surface
= Universal constant called the Stefan-Boltzmann constant 
T = Absolute temperature
The total heat loss would be then





Therefore the net rate of heat loss from the body by radiation is 155.29J
This the answer <span>Often, a law can be expressed in the form of a single mathematical equation. Laws and theories are similar in that they are both scientific statements that result from a tested hypothesis and are supported by scientific evidence. ... A theory, in contrast, is a less concise statement of observed phenomena. i hope this help </span>
<span>D. People need to have the ability to protect themselves and their homes.</span>
Answer:
0.0126°C
Explanation:
Kinetic energy sustain by the block,K.E = 1/2× mass×velocity^2
K.E = 1/2 ×1.3×(4^2)
=1/2 × 1.3× 16 = 1.3 ×8 = 10.4J
The internal energy is 71% of kinetic energy is;
U= 71/100 × 10.4 = 7.38J
But U = m × C × ∆T
Where U is internal energy
m is the mass of iron
C is the heat capacity of iron
∆T is the temperature change
By make ∆T the subject of the formula we have
∆T=U/ m×C
=7.38/ 1.3×452= 0.0126°C