Hi there!
Initially, we have gravitational potential energy and kinetic energy. If we set the zero-line at H2 (12.0m), then the ball at the second building only has kinetic energy.
We also know there was work done on the ball by air resistance that decreased the ball's total energy.
Let's do a summation using the equations:

Our initial energy consists of both kinetic and potential energy (relative to the final height of the ball)

Our final energy, since we set the zero-line to be at H2, is just kinetic energy.

And:

The work done by air resistance is equal to the difference between the initial energy and the final energy of the soccer ball.
Therefore:

Solving for the work done by air resistance:


<em>The first blank is </em><em>robust watermark</em>; a robust watermark will not resist tampering.
<em>The second blank is </em><em>fragile watermark</em><em>;</em> a fragile watermark will resist manipulations of the media.
<h3>What is a watermark?</h3>
A watermark is a faint design made in paper during manufacture that is visible when held against the light and clearly identifies the maker.
The watermark can be of different types depending on the application and they include:
- A robust watermark will not resist tampering.
- A fragile watermark will resist manipulations of the media.
Thus, The first blank is robust watermark; a robust watermark will not resist tampering.
The second blank is fragile watermark; a fragile watermark will resist manipulations of the media.
Learn more about watermark here:.
brainly.com/question/24206908
#SPJ1
From a to b speed is 600+40 = 640
from b to a speed is 600-40 = 560
let t be the number of hours of flight. This would mean it would have traveled a distance of 640 miles and the distance yet to travel is 2400-640t
Time left will be (2400-640t)/640. But if they were to return to a it would fly 640t miles at 560mph which will take (640t/560) hrs
(2400-640t) / 640 = 640t / 560
560(2400 - 640t) = 640t x 640
t = 1.75hrs
ANSWER:
(a) 1036 N
(b) -1036 N
(c) 2590 N
STEP-BY-STEP EXPLANATION:
Given:
Mc = 1400 kg
Mt = 560 kg
a = 1.85 m/s^2
(a)
Force by car on trailer:

(b)

(c)