2) acceleration = final velocity - initial velocity / time —> V-U/T
Acceleration is the change in velocity over the change in time so it can be represented by the equation a = Δv/Δt.
3) first one- F=10.5 N
second one- 4 m/s^2
third one- 1200N
Wavelength is the distance between 2 adjacent points in a wave
we can use the following equation to find the wavelength of a sound wave
wavelength = speed / frequency
frequency is the number of waves passing a point in 1 second
substituting the values in the equation
wavelength = 343 m/s / 686 Hz
wavelength = 0.5 m
wavelength of the wave is 0.5 m
Although many characteristics are common<span> throughout the </span>group<span>, the heavier metals such as Ca, Sr, Ba, and Ra are almost as reactive as the </span>Group<span> 1 Alkali Metals. All the </span>elements<span> in </span>Group 2 have two<span> electrons in their valence shells, giving them an oxidation state of +</span><span>2.</span>
Hi! I believe your answer is decreasing. <u>An inclined plane makes work easier by decreasing the amount of effort force needed, but increases the distance</u>. I hope this helps you! Good luck and have a great day. ❤️✨
Answer:
θ = 4.78º
with respect to the vertical or 4.78 to the east - north
Explanation:
This is a velocity compound exercise since it is a vector quantity.
The plane takes a direction, the air blows to the west and the result must be to the north, let's use the Pythagorean theorem to find the speed
v_fly² = v_nort² + v_air²
v_nort² = v_fly² + - v_air²
Let's use trigonometry to find the direction of the plane
sin θ = v_air / v_fly
θ = sin⁻¹ (v_air / v_fly)
let's calculate
θ = sin⁻¹ (10/120)
θ = 4.78º
with respect to the vertical or 4.78 to the north-east