Answer:
phase difference = π / 2
constructive interference
Explanation:
Given data
wavelength = 420 nm
1st beam = 105 nm
path difference = 105 nm
to find out
phase difference and interference pattern of the two beams
solution
we use here equation of phase difference that is
phase difference = 2π / wavelength × Δx
put here value
phase difference = 2π / 420 × 105
phase difference = π / 2
and
we know that here path difference Δx is the integral multiple of the wavelength so it will be constructive interference
Δx is wavelength / 4
Answer:
<u>Electromagnetic introduction</u> is the production of an electromotive force (voltage) across an electrical conductor in a changing magnetic field.
- <em><u>Step up transformers</u></em><u> is</u> a transformer in which the output (secondary) voltage is greater than its input (primary) voltage is called a step-up transformer. The step-up transformer decreases the output current for keeping the input and output power of the system equal.
- <u><em>Step down transformer is </em></u><em>a transformer in which the output (secondary) voltage is less than its input (primary) voltage is called a step-down transformer. The number of turns on the primary of the transformer is greater than the turn on the secondary of the transformer.</em>
<em />
<u>The difference between them:</u>
A transformer is a static device which transfers a.c electrical power from one circuit to the other at the same frequency, but the voltage level is usually changed. For economical reasons, electric power is required to be transmitted at high voltage whereas it has to be utilized at low voltage from a safety point of view. This increase in voltage for transmission and decrease in voltage for utilization can only be achieved by using a step-up and step-down transformer.
Hopefully this helped.
Answer:

Explanation:
For this exercise we must use the principle of conservation of energy
starting point. The proton very far from the nucleus
Em₀ = K = ½ m v²
final point. The point where the proton is stopped (v = 0)
Em_f = U = q V
where the potential is
V = k Ze / r²
Let us consider that all the charge of the nucleus is in the center, therefore r is the distance from this point to the proton that is approaching
Energy is conserved
Em₀ = Em_f
½ m v² = e (
)
with this expression we can find the closest approach distance (r)
Taking specific heat of lead as 0.128 J/gK = c
We have energy of ball at 7.00 meter height = mgh = 
When leads gets heated by a temperature ΔT energy needed = mcΔT
=
ΔT
Comparing both the equations
=
ΔT
ΔT = 0.536 K
Change in temperature same in degree and kelvin scale
So ΔT = 0.536 