1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
ValentinkaMS [17]
4 years ago
11

Determine the amount of potential energy of a 5 newton book that is moved to three different shelves on a bookcase. The height o

f each shelf is 1.0 meter, 1.5 meters, and 2.0 meters.
Physics
1 answer:
BigorU [14]4 years ago
5 0
Gravitational Potential Energy = weight x height

for 1 meter:

GPE = 5 x 1
 = <u>5N</u>

for 1.5 metres:

GPE = 5 x 1.5
 = <u>7.5N</u>

for 2 metres:

GPE = 5 x 2
 = <u>10N</u>
You might be interested in
Pleaseeeeeee, help me, I need youuuu!!!!!!
tester [92]
The picture is blurry dude :/
6 0
2 years ago
A wall in a house contains a single window. The window consists of a single pane of glass whose area is 0.15 m2 and whose thickn
KengaRu [80]

Answer:

88 %

Explanation:

The rate of heat loss by a conducting material of thermal conductivity K, cross-sectional area,A and thickness d with a temperature gradient ΔT is given by

P = KAΔT/d

The total heat lost by the styrofoam wall is P₁ = K₁A₁ΔT₁/d₁ where K₁ =thermal conductivity of styrofoam wall 0.033 W/m-K, A₁ = area of styrofoam wall = 17 m², ΔT₁ = temperature gradient between inside and outside of the wall and d₁ = thickness of styrofoam wall = 0.20 m

The total heat lost by the glass window is P₂ = K₂A₂ΔT₂/d₂ where K₂ =thermal conductivity of glass window pane wall 0.96 W/m-K, A₂ = area of glass window pane = 0.15 m², ΔT₂ = temperature gradient between inside and outside of the window and d₂ = thickness of glass window pane = 7 mm = 0.007 m

The total heat lost is P = P₁ + P₂ = K₁A₁ΔT₁/d₁ + K₂A₂ΔT₂/d₂

Now, since the temperatures of both inside and outside of both window and wall are the same, ΔT₁ = ΔT₂ = ΔT

So, P = K₁A₁ΔT/d₁ + K₂A₂ΔT/d₂

Since P₂ = K₂A₂ΔT₂/d₂ = K₂A₂ΔT/d₂is the heat lost by the window, the fraction of the heat lost by the window from the total heat lost is

P₂/P = K₂A₂ΔT/d₂ ÷ (K₁A₁ΔT/d₁ + K₂A₂ΔT/d₂)

= 1/(K₁A₁ΔT/d₁÷K₂A₂ΔT/d₂ + 1)

= 1/(K₁A₁d₂÷K₂A₂d₁ + 1)

= 1/[(0.033 W/m-K × 17 m² × 0.007 m ÷ 0.96 W/m-K × 0.15 m² × 0.20 m) + 1]

= 1/(0.003927/0.0288 + 1)

= 1/(0.1364 + 1)

= 1/1.1364

= 0.88.

The percentage is thus P₂/P × 100 % = 0.88 × 100 % = 88 %

The percentage of heat lost by window of the total heat is 88 %

6 0
3 years ago
A glider is gliding through the air at a height of 416 meters with a speed of 45.2 m/s. The glider
julia-pushkina [17]

There's not enough information to find an answer.

I think the idea here is that in descending (416 - 278) = 138 meters,
the glider gives up some gravitational potential energy, which
becomes kinetic energy at the lower altitude.  This is all well and
good, but we can't calculate the difference in potential energy
without knowing the mass of the glider.

3 0
3 years ago
A uniform log of length L is inclined 30° from the horizontal when supported by a frictionless rock located 0.6L from its left e
mafiozo [28]

Answer:

x = 0.974 L

Explanation:

given,

length of inclination of log = 30°

mass of log = 200 Kg

rock is located at = 0.6 L

L is the length of the log

mass of engineer = 53.5 Kg

let x be the distance from left at which log is horizontal.

For log to be horizontal system should be in equilibrium

 ∑ M = 0

mass of the log will be concentrated at the center  

distance of rock from CM of log = 0.1 L

now,

∑ M = 0

m_{log} g \times 0.1 L = m_{engineer} g \times (x - 0.6 L)

200 \times 0.1 L = 53.5 \times (x - 0.6 L)

0.374 L =x - 0.6 L

       x = 0.974 L

hence, distance of the engineer from the left side is equal to x = 0.974 L

7 0
3 years ago
A power station with an efficiency e generates W watts of electric power and dissipates D J of heat energy each second to the co
Andrews [41]

Answer: 13.94 tons/s

Explanation:

On adding heat energy to a substance, the temperature would be changed by a particular amount. This relationship between heat energy and temperature is often different for each material. The specific heat, is a value that describes how they relate.

Heat energy = mass flow rate * specific heat * Δ T

Q = MC (ΔΦ)

Heat energy, Q= 3.5*10^8J

Mass flow rate, M= ?

Specific heat, C= 4184j/KgC

Change in temperature, ΔΦ= 6°C

M = Q/CΔΦ

M = (3.5*10^8)/4184*6

M = 13942kg/s

M = 13.94 tons/s

3 0
3 years ago
Other questions:
  • Why is physics important to everyone? Describe 5 applications of physics in everyday life.
    15·1 answer
  • A disk with a radius of R is oriented with its normal unit vector at an angle Θ with respect to a uniform electric field. Which
    15·2 answers
  • Can you describe the clothes washing system inside a washing machine and explain how it is an embedded system ?
    6·2 answers
  • Ms. Mayo challenged her students to build a pendulum that would hit a block of wood and make it travel the farthest distance. Th
    15·1 answer
  • In both ionic and molecular bonds, the resulting compound is stabilized because
    10·1 answer
  • Why does a revolving stone tied in a string flies away when the string breaks??
    8·1 answer
  • How is an image from a CT scan made from 2D X-ray images?
    5·2 answers
  • How can i stop loveing you if yo keep saying the things i want to hear
    7·2 answers
  • If a quantity of heat equal to the magnitude of the change in mechanical energy of the water goes into the water, what is its in
    10·1 answer
  • Which of Newton’s laws best describes why the penny hung in the air for a split second?
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!