Answer:
The final charges of each sphere are: q_A = 3/8 Q
, q_B = 3/8 Q
, q_C = 3/4 Q
Explanation:
This problem asks for the final charge of each sphere, for this we must use that the charge is distributed evenly over a metal surface.
Let's start Sphere A makes contact with sphere B, whereby each one ends with half of the initial charge, at this point
q_A = Q / 2
q_B = Q / 2
Now sphere A touches sphere C, ending with half the charge
q_A = ½ (Q / 2) = ¼ Q
q_B = ¼ Q
Now the sphere A that has Q / 4 of the initial charge is put in contact with the sphere B that has Q / 2 of the initial charge, the total charge is the sum of the charge
q = Q / 4 + Q / 2 = ¾ Q
This is the charge distributed between the two spheres, sphere A is 3/8 Q and sphere B is 3/8 Q
q_A = 3/8 Q
q_B = 3/8 Q
The final charges of each sphere are:
q_A = 3/8 Q
q_B = 3/8 Q
q_C = 3/4 Q
Recall this gas law:
= 
P₁ and P₂ are the initial and final pressures.
V₁ and V₂ are the initial and final volumes.
T₁ and T₂ are the initial and final temperatures.
Given values:
P₁ = 475kPa
V₁ = 4m³, V₂ = 6.5m³
T₁ = 290K, T₂ = 277K
Substitute the terms in the equation with the given values and solve for Pf:

<h3>P₂ = 279.2kPa</h3>
Place the next vector with its tail at the previous vector's head. ... To subtract vectors, proceed as if adding the two vectors, but flip the vector to be subtracted across the axes and then join it tail to head as if adding. Adding or subtracting any number of vectors yields a resultant vector.
Explanation: