Answer:
There are 6.022 × 1023 atoms of potassium in every mole of potassium. Since one mole of KOH contains one mole of K, the answer is 6.022×1023 atoms of K.
Explanation:
Answer:
D
Explanation:
plz mark brainliest answer if it helps
Answer:
Option B will require a shorter wave length of light.
Explanation:
The bonding between Ozone (O3) and Oxygen (O2) can be used to explain why the breaking of oxygen into Oxygen radicals will require a shorter wave length.
- The bond between Oxygen (O2) is a double bond while Ozone (O3) has an intermediate bond between a double bond and a single bond.
- The bond order of Oxygen (O2) is equals 2 while that of Ozone (O3) is 1.5. Since the bond order of oxygen is higher, it will require more energy to break the bond compared to breaking the Ozone (O3) bond.
- Recall that Energy is inversely proportional to wave length.
- So it will require a shorter wave length to break the Oxygen (O2) into its radicals.
Answer:
394.99g
Explanation:
The number of moles of a substance can be calculated by dividing the number of atoms of such substance by Avagadro's number (6.02 × 10^23)
n = nA ÷ 6.02 × 10^23
The number of atoms of Fp3BZ2 in this question is 2.45E24 formula units i.e. 2.45 × 10^24
n = 2.45 × 10^24 ÷ 6.02 × 10^23
n = 2.45/6.02 × 10^(24-23)
n = 0.407 × 10¹
n = 4.07moles
Using mole = mass/molar mass
Where; molar mass of Fp3Bz2. is 97.05
g/mol.
mass = molar mass × mole
mass = 97.05 × 4.07
mass = 394.99g
The answer to letter b is