1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
enot [183]
3 years ago
5

A small meteorite with mass of 1 g strikes the outer wall of a communication satellite with a speed of 2Okm/s (relative to the s

atellite). The mass of the satellite is 200 kg.
About how much energy (in kJ) was converted to heat?
Physics
1 answer:
strojnjashka [21]3 years ago
4 0

Answer:

The energy coverted to heat is 200 kilojoules.

Explanation:

GIven the absence of external forces exerted both on the small meteorite and on the communication satellite, the Principle of Linear Momentum is considered and let suppose that collision is completely inelastic and that satellite is initially at rest. Hence, the expression for the satellite-meteorite system:

m_{M}\cdot v_{M} + m_{S}\cdot v_{S} = (m_{M}+m_{S})\cdot v

Where:

m_{M}, m_{S} - Masses of the small meteorite and the communication satellite, measured in kilograms.

v_{M}, v_{S} - Speeds of the small meteorite and the communication satellite, measured in meters per second.

v - Final speed of the satellite-meteorite system, measured in meters per second.

The final speed of the satellite-meteorite system is cleared:

v = \frac{m_{M}\cdot v_{M}+m_{S}\cdot v_{S}}{m_{M}+m_{S}}

If m_{M} = 1\times 10^{-3}\,kg, m_{S} = 200\,kg, v_{M} = 20000\,\frac{m}{s} and v_{S} = 0\,\frac{m}{s}, the final speed is now calculated:

v = \frac{(1\times 10^{-3}\,kg)\cdot \left(20000\,\frac{m}{s} \right)+(200\,kg)\cdot \left(0\,\frac{m}{s} \right)}{1\times 10^{-3}\,kg+200\,kg}

v = 0.1\,\frac{m}{s}

Which means that the new system remains stationary and all mechanical energy from meteorite is dissipated in the form of heat. According to the Principle of Energy Conservation and the Work-Energy Theorem, the change in the kinetic energy is equal to the dissipated energy in the form of heat:

K_{S} + K_{M} - K - Q_{disp} = 0

Q_{disp} = K_{S}+K_{M}-K

Where:

K_{S}, K_{M} - Initial translational kinetic energies of the communication satellite and small meteorite, measured in joules.

K - Kinetic energy of the satellite-meteorite system, measured in joules.

Q_{disp} - Dissipated heat, measured in joules.

The previous expression is expanded by using the definition for the translational kinetic energy:

Q_{disp} = \frac{1}{2}\cdot [m_{M}\cdot v_{M}^{2}+m_{S}\cdot v_{S}^{2}-(m_{M}+m_{S})\cdot v^{2}]

Given that m_{M} = 1\times 10^{-3}\,kg, m_{S} = 200\,kg, v_{M} = 20000\,\frac{m}{s}, v_{S} = 0\,\frac{m}{s} and v = 0.1\,\frac{m}{s}, the dissipated heat is:

Q_{disp} = \frac{1}{2}\cdot \left[(1\times 10^{-3}\,kg)\cdot \left(20000\,\frac{m}{s} \right)^{2}+(200\,kg)\cdot \left(0\,\frac{m}{s} \right)^{2}-(200.001\,kg)\cdot \left(0.001\,\frac{m}{s} \right)^{2}\right]Q_{disp} = 200000\,J

Q_{disp} = 200\,kJ

The energy coverted to heat is 200 kilojoules.

You might be interested in
A carmaker has designed a car that can reach a maximum acceleration of 12 meters per second the cars mass is 1515 assuming the s
Rudiy27
The answer is attached. Also, you should know that the unit for acceleration is m/s2 and for velocity it is m/s.

5 0
3 years ago
Read 2 more answers
What is the frequency of a photon with an energy of 4. 56 x 10^-19 j
Sauron [17]

The frequency of a photon with an energy of 4.56 x 10⁻¹⁹ J is 6.88×10¹⁴ s⁻¹.

<h3>What is a frequency?</h3>

The number of waves that travel through a particular point in a given length of time is described by frequency. So, if a wave takes half a second to pass, the frequency is 2 per second.

Given that the energy of the photon is 4.56 x 10⁻¹⁹ J. Therefore, the frequency of the photon can be written as,

\rm \gamma = \dfrac{E}{h} = \dfrac{4.56x10^{-19} J}{6.626 \times 10^{-34}\ Jsec^{-1}}\\\\\\\gamma  = 6.88 \times 10^{14}\ s^{-1}

Hence, the frequency of a photon with an energy of 4.56 x 10⁻¹⁹ J is 6.88×10¹⁴ s⁻¹.

Learn more about Frequency:

brainly.com/question/5102661

#SPJ4

5 0
2 years ago
Read 2 more answers
What amount of energy is needed for an electron to jump from n = 1 to n = 4?
liberstina [14]

Answer:

E=2.04\times 10^{-18}\ J

Explanation:

We need to find the energy for an electron to jump from n = 1 to n = 4.

The energy in transition from 1 state to another is given by :

E=\dfrac{-2.18\times 10^{-18}}{n^2}\ J

The difference in energy for n = 1 to n = 4 is:

E=-2.18\times 10^{-18}\times (\dfrac{1}{4^2}-1)\\\\E=2.04\times 10^{-18}\ J

So, the required energy is equal to 2.04\times 10^{-18}\ J.

4 0
3 years ago
1.Mention two uses of the concave mirror.
Anuta_ua [19.1K]

Answer:

1. telescope

2.

f =  \frac{r}{2}

f =  \frac{r}{2}f- focal length

f =  \frac{r}{2}f- focal length r- the radius of curvature of the mirror

\frac{1}{f}  =   \frac{1}{p}  +  \frac{1}{l}

p-the distance of the object from the vertex of the mirror

l-the distance of the figure from the vertex of the mirror

8 0
3 years ago
I will be so thankful if u answer correctly!!​
olga_2 [115]
<h2>Answer:</h2>

(a) 10N

<h2>Explanation:</h2>

The sketch of the two cases has been attached to this response.

<em>Case 1: The box is pushed by a horizontal force F making it to move with constant velocity.</em>

In this case, a frictional force F_{r} is opposing the movement of the box. As shown in the diagram, it can be deduced from Newton's law of motion that;

∑F = ma    -------------------(i)

Where;

∑F = effective force acting on the object (box)

m = mass of the object

a = acceleration of the object

∑F = F -  F_{r}

m = 50kg

a = 0   [At constant velocity, acceleration is zero]

<em>Substitute these values into equation (i) as follows;</em>

F -  F_{r} = m x a

F -  F_{r} = 50 x 0

F -  F_{r} = 0

F =  F_{r}            -------------------(ii)

<em>Case 2: The box is pushed by a horizontal force 1.5F making it to move with a constant velocity of 0.1m/s²</em>

In this case, the same frictional force F_{r} is opposing the movement of the box.

∑F = 1.5F -  F_{r}

m = 50kg

a =  0.1m/s²

<em>Substitute these values into equation (i) as follows;</em>

1.5F -  F_{r} = m x a

1.5F -  F_{r} = 50 x 0.1

1.5F -  F_{r} = 5            ---------------------(iii)

<em>Substitute </em>F_{r}<em> = F from equation (ii) into equation (iii) as follows;</em>

1.5F - F = 5            

0.5F = 5            

F = 5 / 0.5

F = 10N

Therefore, the value of F is 10N

<em />

4 0
2 years ago
Other questions:
  • A disk rolls along a flat surface at a constant speed of 10 m/s. Its diameter is 0.5 m. At a particular instant, point P on the
    7·1 answer
  • What Type of relationship exists between the Temperature of a Star and the Wavelength of a Star?
    9·2 answers
  • Which stars have the lowest absolute brightness?
    8·2 answers
  • What happens when a cold front meets a warm front?
    9·2 answers
  • An electron is moving directly toward you in a horizontal path when it suddenly enters a uniform magnetic field that is either v
    15·1 answer
  • A car is being pulled by a tow truck. What is the car's mass if the net force on the car is 5400 N and it has an acceleration of
    14·1 answer
  • What do we call the area of a solar eclipse where the Moon covers the Sun, but the outline of the Sun can still be seen?
    6·1 answer
  • Using the vocabulary words we have learned so far in this unit, describe what happens when something warms up.
    13·2 answers
  • Lora (of mass 47.4 kg) is an expert skier. She
    14·1 answer
  • Uranium-235 Fission
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!