Answer:
The mixture is made up of different atoms and pure substance is made up of same type of atom.
The main difference is that mixture can be separated into its component by physical mean while pure substances can not be separated by physical process
Explanation:
Mixture:
- The properties of the mixture are not same and contains the properties of all those component present in it.
- it is a combination of one or more Pure substances and can be separated by simple physical methods.
- it have varying boiling and melting point
Examples are:
- mixture of salt and sand
- Salt water is mixture of water and NaCl and can be separated by physical mean.
- Alloys: its a mixture of different metal
- Air: mixture of gases
Pure Substance:
Pure substances are those made of same type of atoms all elements and compounds are pure substances.
- it can not be separated by simple physical mean
- it have very constant and consistent melting and boiling point
Examples are:
- Water : contain only water molecule
- All elements: all elements are pure substance made of same atoms
- All compounds: can not be separated by physical mean.
Answer:
oxygen
Explanation:
because the 2nd shell is not complete which is suppose to be 8 and since oxygen is 8 it first shell is 2 which is complete and the second shell which is 6 is not complete because we all know that 2+6=8 but the standard shell is
K-2
L-8
M-8
Answer:
Explanation: A yellow precipitate o lead iodide is formed. see equation of reaction below:
→ 
Th PbI2 is the insoluble yellow precipitate
Mass is the property of a physical body and the resistance to acceleration when a net force is applied on the body.
The atomic mass of sodium (Na) is = 22.98
The atomic mass of nitrate (N) is = 14.00
The atomic mass of oxygen (O) is = 15.99
The sodium nitrate (NaNO3) consists of the atomic masses of Na+N+(O)3 = 85 grams
Therefore, the mass of 6.5 mol of sodium nitrate is = 6.5 * 1 mol of NaNO3
= 6.5 * (85)
= 552.50 grams
homeostatic imbalance is the answer, because it's when the internal environment cannot remain in equilibrium.