Answer:
244mm
Explanation:
I₁ = 3.35A
I₂ = 6.99A
μ₀ = 4π*10^-7
force per unit length (F/L) = 6.03*10⁻⁵N/m
B = (μ₀ I₁ I₂ )/ 2πr .........equation i
B = F / L ..........equation ii
equating equation i & ii,
F / L = (μ₀ I₁ I₂ )/ 2πr
Note F/L = B = F
F = (μ₀ I₁ I₂ ) / 2πr
2πr*F = (μ₀ I₁ I₂ )
r = (μ₀ I₁ I₂ ) / 2πF
r = (4π*10⁻⁷ * 3.35 * 6.99) / 2π * 6.03*10⁻⁵
r = 1.4713*10⁻⁵ / 6.03*10⁻⁵
r = 0.244m = 244mm
The distance between the wires is 244m
Answer:
Explanation: Determine the gravitational acceleration. ...
Decide whether the object has an initial velocity. ...
Choose how long the object is falling. ...
Calculate the final free fall speed (just before hitting the ground) with the formula v = v₀ + gt
Mass is the physical quantity
Answer: See photo
Explanation: There are a couple of ways to use velocity in an equation in the photo.
Answer:
Use the drop-down menus to complete the statements.
When electrons are lost, a
✔ positive
ion is formed.
When electrons are gained, a
✔ negative
ion is formed.
Explanation: