Answer: 0.66 V
Explanation:
Given
Magnetic field, B = 0.963 T
Instantaneous rare = 74.5 cm/s = 0.745 m/s
radius, r = 14.7 cm = 0.147 m
We will use the formula
emf = dΦ/dt
emf = d(BA)/dt
emf = d(Bπr²)/dt
if B is constant, then we can say
emf = Bπ d(r²)/dt on differentiating, we have,
emf = Bπ (2r dr/dt)
emf = 2πrB dr/dt substituting each values, we have
emf = 2 * 3.142 * 0.147 * 0.963 * 0.745
emf = 0.66 V
Therefore, the induced emf in the loop at that instant is 0.66 V
I believe that they are Ice Glaciers.
Answer:
E) 80 N/m
Explanation:
Given;
mass of the block, m = 4.8 kg
displacement of the block, x = -0.5 m
velocity of the block, v = -0.8 m/s
acceleration of the block, a = 8.3 m/s²
From Newton's second law of motion;
F = ma
Also, from Hook's law;
F = -Kx
where;
k is the force constant
Thus, ma = -kx
k = -ma/x
k = -(4.8 x 8.3) / (-0.5)
k = 79.7 N/m
k ≅ 80 N/m
Therefore, the force constant of the spring is closest to 80 N/m
450 J / 3 s = 150 J/s = 150 watts.
Because heat keeps us warm and water hydrates the planet i guess?????
<span />