Answer:
Explanation:
Intensity of light is inversely proportional to distance from source
I ∝ 1 /r² where I is intensity and r is distance from source . If I₁ and I₂ be intensity at distance r₁ and r₂ .
I₁ /I₂ = r₂² /r₁²
If r₂ = 4r₁ ( given )
I₁ / I₂ = (4r₁ )² / r₁²
= 16 r₁² / r₁²
I₁ / I₂ = 16
I₂ = I₁ / 16
So intensity will become 16 times less bright .
"16 times " is the answer .
Answer:
hshawi hdsdk
done and my name is fricking bella your gonna die
Answer:
HERE IS YOUR ANSWER
Explanation:
PLEASE MARK MY ANSWER AS BRAINLIEST IF THE ANSWERS ARE CORRECT .
Beacuse of the loose connection of the wire .
Straight
Answer:
The canon B hits the ground fast.
Explanation:
Given that,
Speed of cannon A = 85 m/s
Speed of cannon B= 100 m/s
Speed of cannon C = 75 m/s
We need to calculate the cannonballs will hit the ground with the greatest speed
Using conservation of energy
The final kinetic energy of canon depends on initial kinetic energy and potential energy.
The final velocity depends upon initial velocity and initial height.
So, the initial velocity of canon B is high.
Hence, The canon B hits the ground fast.
Answer:
A) If you halve the wavelength, the electromagnetic radiation energy will double.
B) The energy of the electromagnetic radiation will halve if you halve the wavenumber.
C) When the frequency of the light is doubled, its energy will double.
Explanation:
The function for the light frequency is given as
The energy supplied to each electron is doubled by halving the wavelength, nearly doubling its kinetic energy by two after it is free from the metal. It is important to remember that for a given period of time, the number of electrons ejected will remain constant.
Cheers