Answer:
A. when the mass has a displacement of zero
Explanation:
The velocity of a mass on a spring can be calculated by using the law of conservation of energy. In fact, the total energy of the mass-spring system is equal to the sum of the elastic potential energy (U) of the spring and the kinetic energy (K) of the mass:

where
k is the spring constant
x is the displacement of the mass with respect to the equilibrium position of the spring
m is the mass
v is the velocity of the mass
Since the total energy E must remain constant, we can notice the following:
- When the displacement is zero (x=0), the velocity must be maximum, because U=0 so K is maximum
- When the displacement is maximum, the velocity must be minimum (zero), because U is maximum and K=0
Based on these observations, we can conclude that the velocity of the mass is at its maximum value when the displacement is zero, so the correct option is A.
<u>Answer</u>:
The coefficient of static friction between the tires and the road is 1.987
<u>Explanation</u>:
<u>Given</u>:
Radius of the track, r = 516 m
Tangential Acceleration
= 3.89 m/s^2
Speed,v = 32.8 m/s
<u>To Find:</u>
The coefficient of static friction between the tires and the road = ?
<u>Solution</u>:
The radial Acceleration is given by,




Now the total acceleration is
=>
=>
=>
=>
The frictional force on the car will be f = ma------------(1)
And the force due to gravity is W = mg--------------------(2)
Now the coefficient of static friction is

From (1) and (2)


Substituting the values, we get


The answer is to this question is B
Answer:
The mass of the man is 71 kg
Explanation:
Given;
kinetic energy of the man, K.E = 887.5 J
velocity of the man, v = 5 m/s
The mass of the man is calculated as follows;
K.E = ¹/₂mv²
where;
m is the mass of the man
2K.E = mv²
m = 2K.E / v²
m = (2 x 887.5) / (5)²
m = 71 kg
Therefore, the mass of the man is 71 kg