To develop the problem it is necessary to apply the concepts related to the ideal gas law, mass flow rate and total enthalpy.
The gas ideal law is given as,

Where,
P = Pressure
V = Volume
m = mass
R = Gas Constant
T = Temperature
Our data are given by




Note that the pressure to 38°C is 0.06626 bar
PART A) Using the ideal gas equation to calculate the mass flow,




Therfore the mass flow rate at which water condenses, then

Re-arrange to find 



PART B) Enthalpy is given by definition as,

Where,
= Enthalpy of dry air
= Enthalpy of water vapor
Replacing with our values we have that



In the conversion system 1 ton is equal to 210kJ / min


The cooling requeriment in tons of cooling is 437.2.
Answer:
14.27 mm
Explanation:
Force = 80 Newton
Pressure exerted = 5 bar = 5×10⁵ Pa
Pressure exerted = Force/Area
Area = Force/Pressure

Area of the cylinder=πd²/4

Hence diameter of cylinder 14.27 mm
Answer:
Algorith does not work.
Explanation:
One of the ways to obtain the Dekker Algorithm is through a change in the declaration, that is, a declaration that can be executed at the exact moment it leaves the critical section. This way it is possible that the statement,
turn = 1-i / * P0 sets turn to 1 and P1 sets turn 0 * /
It can be changed to,
turn = (turn +1) \% n / * n = number or processes * /
The result will allow to define if it works or not, that is, if it is greater than 2 the algorithm will not be able to work.
Given this consideration we can say that,
<em>- The dead lock does not occur, because the mutual is imposed (if a resource unit has been assigned to a process, then no other process can access that resource).</em>
<em>- There is the possibility of starving if the shift is established in a non-contentious process.</em>
Directly it can be concluded that there is a possibility of starvation so the algorithm could not work, despite the fact that mutual exclusion guarantees that a dead block does not occur.