Answer:
None of these
Explanation:
There are different types of amplifiers, and each has different characteristics.
- Voltage amplifier needs high input and low output resistance.
- Current amplifier needs Low Input and High Output resistance.
- Trans-conductance amplifier Low Input and High Output resistance.
- Trans-Resistance amplifier requires High Input and Low output resistance.
Therefore, the correct answer is "None of these "
Answer:
R = 31.9 x 10^(6) At/Wb
So option A is correct
Explanation:
Reluctance is obtained by dividing the length of the magnetic path L by the permeability times the cross-sectional area A
Thus; R = L/μA,
Now from the question,
L = 4m
r_1 = 1.75cm = 0.0175m
r_2 = 2.2cm = 0.022m
So Area will be A_2 - A_1
Thus = π(r_2)² - π(r_1)²
A = π(0.0225)² - π(0.0175)²
A = π[0.0002]
A = 6.28 x 10^(-4) m²
We are given that;
L = 4m
μ_steel = 2 x 10^(-4) Wb/At - m
Thus, reluctance is calculated as;
R = 4/(2 x 10^(-4) x 6.28x 10^(-4))
R = 0.319 x 10^(8) At/Wb
R = 31.9 x 10^(6) At/Wb
Answer:
Technician B
Explanation:
Technician B is correct in his argument. This is because according to what he said, as the computer pulses stimuli the coil will turn on and off, promoting an increase in the voltage that will cause the fluctuation. Technician A is incorrect because the procedure he indicated imposes that the voltage is checked at the negative terminal and not at the positive.