1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
garik1379 [7]
3 years ago
7

#198. Moment of inertia about center of a segmented bar A bar of width is formed of three uniform segments with lengths and area

l densities given by: Matlab/Mathematica input: L1 = 6 rho1 = 1 L2 = 6 rho2 = 8 L3 = 4 rho3 = 5 What is the moment of inertia of the bar about the center of mass ?

Engineering
1 answer:
zaharov [31]3 years ago
6 0

Complete Complete

The complete question is shown on the first uploaded image

Answer:

The moment of inertia of the bar about the center of mass is

I_r = 1888.80  \  kg m^2

Explanation:

The free body diagram  is shown on the second uploaded image

From the diagram we see that is

The mass of each segment is

          m_1 = \rho_1  l_1 w = 1 * 6 * 2 = 12

          m_1 = \rho_2  l_2 w = 8 * 6 * 2 = 96

          m_1 = \rho_2  l_2 w = 5 * 5 * 2 = 50

The distance from the origin to the center of the segments i.e the center of masses for the individual segments

   x_2 = \frac{6}{2} + 6 = 9 m

   x_3 = \frac{4}{2} + 12 = 14 m

           

The  resultant center of mass is mathematically evaluated as

              x_r = \frac{m_1 * x_1 + m_2 *x_2 + m_3 *x_3}{m_1 + m_2 + m_3}    

        =   \frac{12 * 3 + 96 *9 + 50 *14}{12+ 96 + 50}

                      x_r = 10.13m        

The moment of Inertia of each segment of the bar is mathematically evaluated

             I_1 =\frac{m_1}{12}(l_1^2 + w^2) =    \frac{12}{12}(1^2 + 2^2)        

                   I_1 = 4 \ kgm^2

             I_2 =\frac{m_2}{12}(l_2^2 + w^2)  =    \frac{96}{12}(6^2 + 2^2)

                 I_2 = 320 \ kgm^2

             I_3 =\frac{m_3}{12}(l_3^2 + w^2)  =    \frac{50}{12}(4^2 + 2^2)        

                   I_2 = 83.334 \ kgm^2        

According to parallel axis theorem the moment of inertia about the center (x_r) is mathematically evaluated as

           I_r = (I_1 + m_1 r_1^2) + (I_2 + m_2 r_2^2) +(I_3 + m_3 r_3^2)

   I_r = (I_1 + m_1 |x_r - x_1|^2) + (I_2 + m_2 |x_r - x_2|^2) +(I_3 + m_3 |x_r - x_3|^2)

   I_r = (4  + 12 |10.13 - 3|^2) + (320 + 96 |10.13 - 9|^2) +(83.334 + 50 |10.13 - 14|^2)        

      I_r = 1888.80  \  kg m^2

You might be interested in
An aquifer has three different formations. Formation A has a thickness of 8.0 m and hydraulic conductivity of 25.0 m/d. Formatio
saveliy_v [14]

Answer:

The horizontal conductivity is 41.9 m/d.

The vertical conductivity is 37.2 m/d.

Explanation:

Given that,

Thickness of A = 8.0 m

Conductivity = 25.0 m/d

Thickness of B = 2.0 m

Conductivity = 142 m/d

Thickness of C = 34 m

Conductivity = 40 m/d

We need to calculate the horizontal conductivity

Using formula of horizontal conductivity

K_{H}=\dfrac{H_{A}K_{A}+H_{A}K_{A}+H_{A}K_{A}}{H_{A}+H_{B}+H_{C}}

Put the value into the formula

K_{H}=\dfrac{8.0\times25+2,0\times142+34\times40}{8.0+2.0+34}

K_{H}=41.9\ m/d

We need to calculate the vertical conductivity

Using formula of vertical conductivity

K_{V}=\dfrac{H_{A}+H_{B}+H_{C}}{\dfrac{H_{A}}{K_{A}}+\dfrac{H_{B}}{K_{B}}+\dfrac{H_{C}}{K_{C}}}

Put the value into the formula

K_{V}=\dfrac{8.0+2.0+34}{\dfrac{8.0}{25}+\dfrac{2.0}{142}+\dfrac{34}{40}}

K_{V}=37.2\ m/d

Hence, The horizontal conductivity is 41.9 m/d.

The vertical conductivity is 37.2 m/d.

3 0
3 years ago
Would be much appreciated if someone could help with this will give brainiest.
Mashcka [7]

Answer:   both mm and inches on each dimension in a sketch (with the main dimension in one format and the other in brackets below it), in the way you can have dual dimensions shown when detailing an idw view.

personally think it would look a mess/cluttered with even more text all over the sketch environment, but everyone's differenent.

If it's any help - you know you can enter dimensions in either format?  If you're working in mm you can still dimension a line and type "2in" and vice-versa.  Probably know this already, but no harm saying it, just in case.

You can enter the units directly in or mm and Inventor will convert to current document settings (which  you can change - maybe someone can come up with a simple toggle icon to toggle the document settings).  Tools>Document Settings>Units

Unlike SolidWorks when you edit the dimension the original entry shows in the dialog box so it makes it easy to keep track of different units even if they aren't always displayed.  (SWx does the conversion or equation and then that is what you get.)

I work quite a bit in inch and metric and combination (ex metric frame motor on inch machine) and it doesn't seem to be a real difficulty to me.

4 0
3 years ago
If you get a flat in the front of your car, your car will:
juin [17]

Answer:

stop and might even crash

Explanation:

6 0
3 years ago
What is a voltage divider circuit and how do you calculate the voltage across one element in a series
Rama09 [41]
Sorry I don’t know myself
6 0
2 years ago
For an Otto cycle, plot the cycle efficiency as a function of compression ratio from 4 to 16.
Elza [17]

Assumptions:

  • Steady state.
  • Air as working fluid.
  • Ideal gas.
  • Reversible process.
  • Ideal Otto Cycle.

Explanation:

Otto cycle is a thermodynamic cycle widely used in automobile engines, in which an amount of gas (air) experiences changes of pressure, temperature, volume, addition of heat, and removal of heat. The cycle is composed by (following the P-V diagram):

  • Intake <em>0-1</em>: the mass of working fluid is drawn into the piston at a constant pressure.
  • Adiabatic compression <em>1-2</em>: the mass of working fluid is compressed isentropically from State 1 to State 2 through compression ratio (r).

        r =\frac{V_1}{V_2}

  • Ignition 2-3: the volume remains constant while heat is added to the mass of gas.
  • Expansion 3-4: the working fluid does work on the piston due to the high pressure within it, thus the working fluid reaches the maximum volume through the compression ratio.

         r = \frac{V_4}{V_3} = \frac{V_1}{V_2}

  • Heat Rejection 4-1: heat is removed from the working fluid as the pressure drops instantaneously.
  • Exhaust 1-0: the working fluid is vented to the atmosphere.

If the system produces enough work, the automobile and its occupants will propel. On the other hand, the efficiency of the Otto Cycle is defined as follows:

           \eta = 1-(\frac{1}{r^{\gamma - 1} } )

where:

           \gamma = \frac{C_{p} }{C_{v}} : specific heat ratio

Ideal air is the working fluid, as stated before, for which its specific heat ratio can be considered constant.

           \gamma = 1.4

Answer:

See image attached.

5 0
3 years ago
Other questions:
  • ¿Por qué creen que la Ingeniería Metalúrgica es una carrera estratégica para el desarrollo de nuestro país?
    9·1 answer
  • The entire population of a given community is examined, and all who are judged to be free from bowel cancer are questioned exten
    12·1 answer
  • Pressurized steam at 400 K flows through a long, thin- walled pipe of 0.6-m diameter. The pipe is enclosed in a concrete casing
    9·2 answers
  • 1. Using a typical frequency value for the initiating event and PFD values provided in class lectures, estimate the mishap or co
    6·1 answer
  • can someone please define these three vocabulary words for my stem class i will give brainliest if i can figure out how
    15·1 answer
  • A train travels 650 meters in 25 seconds. What is the train's velocity?
    9·1 answer
  • Oleg is using a multimeter to test the circuit branch you just installed. After turning off the current to the circuit at the se
    5·1 answer
  • What kinds of problems or projects would a mechanical engineer work on?
    11·1 answer
  • Problem 2
    11·1 answer
  • What do you mean by decentralization??​
    15·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!