Answer:
The horizontal conductivity is 41.9 m/d.
The vertical conductivity is 37.2 m/d.
Explanation:
Given that,
Thickness of A = 8.0 m
Conductivity = 25.0 m/d
Thickness of B = 2.0 m
Conductivity = 142 m/d
Thickness of C = 34 m
Conductivity = 40 m/d
We need to calculate the horizontal conductivity
Using formula of horizontal conductivity

Put the value into the formula


We need to calculate the vertical conductivity
Using formula of vertical conductivity

Put the value into the formula


Hence, The horizontal conductivity is 41.9 m/d.
The vertical conductivity is 37.2 m/d.
Answer: both mm and inches on each dimension in a sketch (with the main dimension in one format and the other in brackets below it), in the way you can have dual dimensions shown when detailing an idw view.
personally think it would look a mess/cluttered with even more text all over the sketch environment, but everyone's differenent.
If it's any help - you know you can enter dimensions in either format? If you're working in mm you can still dimension a line and type "2in" and vice-versa. Probably know this already, but no harm saying it, just in case.
You can enter the units directly in or mm and Inventor will convert to current document settings (which you can change - maybe someone can come up with a simple toggle icon to toggle the document settings). Tools>Document Settings>Units
Unlike SolidWorks when you edit the dimension the original entry shows in the dialog box so it makes it easy to keep track of different units even if they aren't always displayed. (SWx does the conversion or equation and then that is what you get.)
I work quite a bit in inch and metric and combination (ex metric frame motor on inch machine) and it doesn't seem to be a real difficulty to me.
Answer:
stop and might even crash
Explanation:
Assumptions:
- Steady state.
- Air as working fluid.
- Ideal gas.
- Reversible process.
- Ideal Otto Cycle.
Explanation:
Otto cycle is a thermodynamic cycle widely used in automobile engines, in which an amount of gas (air) experiences changes of pressure, temperature, volume, addition of heat, and removal of heat. The cycle is composed by (following the P-V diagram):
- Intake <em>0-1</em>: the mass of working fluid is drawn into the piston at a constant pressure.
- Adiabatic compression <em>1-2</em>: the mass of working fluid is compressed isentropically from State 1 to State 2 through compression ratio (r).

- Ignition 2-3: the volume remains constant while heat is added to the mass of gas.
- Expansion 3-4: the working fluid does work on the piston due to the high pressure within it, thus the working fluid reaches the maximum volume through the compression ratio.

- Heat Rejection 4-1: heat is removed from the working fluid as the pressure drops instantaneously.
- Exhaust 1-0: the working fluid is vented to the atmosphere.
If the system produces enough work, the automobile and its occupants will propel. On the other hand, the efficiency of the Otto Cycle is defined as follows:

where:

Ideal air is the working fluid, as stated before, for which its specific heat ratio can be considered constant.

Answer:
See image attached.