Answer:
h = 10000 m
Explanation:
The pressure applied at a depth of the liquid is given by:
P =ρgh
where,
P = Maximum Pressure to Survive = (1000)(Atmospheric Pressure)
P = (1000)(101325 Pa) = 1.01 x 10⁸ Pa
ρ = Density of sea water = 1025 kg/m³
g = 9.8 m/s²
h = maximum depth to survive = ?
Therefore,
1.01 x 10⁸ Pa = (1025 kg/m³)(9.8 m/s²)h
h = (1.01 x 10⁸ Pa)/(1025 kg/m³)(9.8 m/s²)
<u>h = 10000 m</u>
The starting and ending points of the motion are the same.. . . . .
Answer:
5 m/s
Explanation:
Here we can see there is no external force acted on a two masses when we consider the motion. If there is no external forces then momentum is conserved.
Initial momentum = Final momentum
0.5 × 10 = 1 × V
V = 5 m/s
Answer: 
Explanation:

where;
= final velocity = 0
= initial velocity = 60 km/h = 16.67 m/s
= acceleration
= distance
First all of, because acceleration is given in m/s and not km/h, you need to convert 60km/h to m/s. Our conversion factors here are 1km = 1000m and 1h = 3600s

Solve for a;

Begin by subtracting 

Divide by 2d

Now plug in your values:



If you're wondering why I calculated acceleration first is because in order to find force, we need 2 things: mass and acceleration.

m = mass = 900kg
a = acceleration = -2.78m/s

It's negative because the force has to be applied in the opposite direction that the car is moving.