Answer:
The rate at which radar must rotate is 0.335 rad/s.
Explanation:
Given that,
Velocity = 65 m/h = 29.0576 m/s
Angle = 15°
Suppose, the radius given by

We need to calculate the rate at which radar must rotate
Using formula of linear velocity


Where, v = velocity
r = radius
Put the value into the formula


Hence, The rate at which radar must rotate is 0.335 rad/s.
Answer:
Regions near rivers have water surfaces that rapidly change in temperature from cold to hot.
you have your own answer i only selected which is suitable for me . none of them is wrong they re excellent
Complete Question
An infinite sheet carries a uniform, positive charge per unit area. The electric field produced by the sheet is represented by parallel lines drawn with a density N lines per m2 that are perpendicular to and away from the sheet. The charge per unit area on the sheet is doubled. How should the density of the electric field lines be changed?
A It should stay the same
B It should be quadrupled.
C It should be quintupled
D It should be doubled.
E It should be tripled
Answer:
Option D is the correct option
Explanation:
Generally electric field is mathematically represented as

Where
is the charge per unit area (Charge density )
From the question we are told that
is doubled hence the
Looking the equation above we see that the value of the electric field will also double given that it is directly proportional to the charge density
Answer:
<u><em>The plank moves 0.2m from it's original position</em></u>
Explanation:
we can do this question from the constraints that ,
- the wheel and the axle have the same angular speed or velocity
- the speed of the plank is equal to the speed of the axle at the topmost point .
thus ,
<em>since the wheel is pure rolling or not slipping,</em>
<em>⇒
</em>
where
<em>
- speed of the wheel</em>
<em>
- angular speed of the wheel</em>
<em>
- radius of the wheel</em>
<em>since the wheel traverses 1 m let's say in time '
' ,</em>
<em>
</em>
∴
⇒
the speed at the topmost point of the axle is :
⇒
this is the speed of the plank too.
thus the distance covered by plank in time '
' is ,
⇒
An organ I think that will have the problem is probably the kidney in an animal ! I tried my best